Skip to content

Performance Considerations

This section covers performance optimization and scaling considerations for Tabular SSL.

Memory Optimization

Batch Processing

  1. Dynamic Batch Sizes

    from tabular_ssl import TabularSSL
    
    model = TabularSSL(
        input_dim=10,
        batch_size=32,  # Adjust based on available memory
        gradient_accumulation_steps=4  # Accumulate gradients
    )
    

  2. Memory-Efficient Attention

    model = TabularSSL(
        input_dim=10,
        attention_type='memory_efficient',  # Use memory-efficient attention
        chunk_size=64  # Process attention in chunks
    )
    

Model Optimization

  1. Parameter Sharing

    model = TabularSSL(
        input_dim=10,
        share_parameters=True,  # Share parameters across layers
        parameter_efficiency=True  # Use parameter-efficient methods
    )
    

  2. Quantization

    from tabular_ssl.utils import quantize_model
    
    # Quantize model to reduce memory usage
    quantized_model = quantize_model(
        model,
        precision='int8'  # Use 8-bit quantization
    )
    

Training Speed

Hardware Acceleration

  1. GPU Support

    model = TabularSSL(
        input_dim=10,
        device='cuda',  # Use GPU
        mixed_precision=True  # Enable mixed precision training
    )
    

  2. Multi-GPU Training

    model = TabularSSL(
        input_dim=10,
        distributed=True,  # Enable distributed training
        num_gpus=4  # Use 4 GPUs
    )
    

Optimization Techniques

  1. Efficient Data Loading

    from tabular_ssl.data import DataLoader
    
    loader = DataLoader(
        num_workers=4,  # Use multiple workers
        pin_memory=True,  # Pin memory for faster transfer
        prefetch_factor=2  # Prefetch data
    )
    

  2. Cached Computations

    model = TabularSSL(
        input_dim=10,
        cache_attention=True,  # Cache attention computations
        cache_size=1000  # Cache size
    )
    

Scaling Considerations

Data Scaling

  1. Large Datasets

    from tabular_ssl.data import StreamingDataLoader
    
    # Use streaming data loader for large datasets
    loader = StreamingDataLoader(
        data_path='large_dataset.csv',
        batch_size=32,
        chunk_size=10000  # Process data in chunks
    )
    

  2. Distributed Data Processing

    from tabular_ssl.data import DistributedDataLoader
    
    # Use distributed data loader
    loader = DistributedDataLoader(
        data_path='large_dataset.csv',
        num_workers=4,
        world_size=4  # Number of processes
    )
    

Model Scaling

  1. Model Parallelism

    model = TabularSSL(
        input_dim=10,
        model_parallel=True,  # Enable model parallelism
        num_devices=4  # Split model across 4 devices
    )
    

  2. Pipeline Parallelism

    model = TabularSSL(
        input_dim=10,
        pipeline_parallel=True,  # Enable pipeline parallelism
        num_stages=4  # Number of pipeline stages
    )
    

Performance Monitoring

Metrics

  1. Training Metrics

    from tabular_ssl.utils import TrainingMonitor
    
    monitor = TrainingMonitor(
        metrics=['loss', 'accuracy', 'memory_usage'],
        log_interval=100
    )
    

  2. System Metrics

    from tabular_ssl.utils import SystemMonitor
    
    monitor = SystemMonitor(
        metrics=['gpu_usage', 'memory_usage', 'throughput'],
        log_interval=1
    )
    

Profiling

  1. Model Profiling

    from tabular_ssl.utils import profile_model
    
    # Profile model performance
    profile = profile_model(
        model,
        input_size=(32, 10),  # Batch size, input dimension
        num_runs=100
    )
    

  2. Memory Profiling

    from tabular_ssl.utils import profile_memory
    
    # Profile memory usage
    memory_profile = profile_memory(
        model,
        input_size=(32, 10)
    )
    

Best Practices

Memory Management

  1. Batch Size Selection
  2. Start with small batch sizes
  3. Gradually increase if memory allows
  4. Use gradient accumulation for large batches

  5. Model Architecture

  6. Use parameter-efficient architectures
  7. Implement memory-efficient attention
  8. Consider model quantization

Training Optimization

  1. Hardware Utilization
  2. Use GPU acceleration
  3. Enable mixed precision training
  4. Implement distributed training

  5. Data Processing

  6. Use efficient data loaders
  7. Implement data prefetching
  8. Cache frequent computations