Performance Considerations¶
This section covers performance optimization and scaling considerations for Tabular SSL.
Memory Optimization¶
Batch Processing¶
-
Dynamic Batch Sizes
from tabular_ssl import TabularSSL model = TabularSSL( input_dim=10, batch_size=32, # Adjust based on available memory gradient_accumulation_steps=4 # Accumulate gradients )
-
Memory-Efficient Attention
model = TabularSSL( input_dim=10, attention_type='memory_efficient', # Use memory-efficient attention chunk_size=64 # Process attention in chunks )
Model Optimization¶
-
Parameter Sharing
model = TabularSSL( input_dim=10, share_parameters=True, # Share parameters across layers parameter_efficiency=True # Use parameter-efficient methods )
-
Quantization
from tabular_ssl.utils import quantize_model # Quantize model to reduce memory usage quantized_model = quantize_model( model, precision='int8' # Use 8-bit quantization )
Training Speed¶
Hardware Acceleration¶
-
GPU Support
model = TabularSSL( input_dim=10, device='cuda', # Use GPU mixed_precision=True # Enable mixed precision training )
-
Multi-GPU Training
model = TabularSSL( input_dim=10, distributed=True, # Enable distributed training num_gpus=4 # Use 4 GPUs )
Optimization Techniques¶
-
Efficient Data Loading
from tabular_ssl.data import DataLoader loader = DataLoader( num_workers=4, # Use multiple workers pin_memory=True, # Pin memory for faster transfer prefetch_factor=2 # Prefetch data )
-
Cached Computations
model = TabularSSL( input_dim=10, cache_attention=True, # Cache attention computations cache_size=1000 # Cache size )
Scaling Considerations¶
Data Scaling¶
-
Large Datasets
from tabular_ssl.data import StreamingDataLoader # Use streaming data loader for large datasets loader = StreamingDataLoader( data_path='large_dataset.csv', batch_size=32, chunk_size=10000 # Process data in chunks )
-
Distributed Data Processing
from tabular_ssl.data import DistributedDataLoader # Use distributed data loader loader = DistributedDataLoader( data_path='large_dataset.csv', num_workers=4, world_size=4 # Number of processes )
Model Scaling¶
-
Model Parallelism
model = TabularSSL( input_dim=10, model_parallel=True, # Enable model parallelism num_devices=4 # Split model across 4 devices )
-
Pipeline Parallelism
model = TabularSSL( input_dim=10, pipeline_parallel=True, # Enable pipeline parallelism num_stages=4 # Number of pipeline stages )
Performance Monitoring¶
Metrics¶
-
Training Metrics
from tabular_ssl.utils import TrainingMonitor monitor = TrainingMonitor( metrics=['loss', 'accuracy', 'memory_usage'], log_interval=100 )
-
System Metrics
from tabular_ssl.utils import SystemMonitor monitor = SystemMonitor( metrics=['gpu_usage', 'memory_usage', 'throughput'], log_interval=1 )
Profiling¶
-
Model Profiling
from tabular_ssl.utils import profile_model # Profile model performance profile = profile_model( model, input_size=(32, 10), # Batch size, input dimension num_runs=100 )
-
Memory Profiling
from tabular_ssl.utils import profile_memory # Profile memory usage memory_profile = profile_memory( model, input_size=(32, 10) )
Best Practices¶
Memory Management¶
- Batch Size Selection
- Start with small batch sizes
- Gradually increase if memory allows
-
Use gradient accumulation for large batches
-
Model Architecture
- Use parameter-efficient architectures
- Implement memory-efficient attention
- Consider model quantization
Training Optimization¶
- Hardware Utilization
- Use GPU acceleration
- Enable mixed precision training
-
Implement distributed training
-
Data Processing
- Use efficient data loaders
- Implement data prefetching
- Cache frequent computations
Related Resources¶
- Architecture Overview - System design details
- SSL Methods - Learning approaches
- API Reference - Technical documentation