emonet.data_loader module
emonet.data_loader module#
Module for creating dataset with augmentation. Good working version.
- class emonet.data_loader.TQDataset(meta_data: pathlib.Path, data_dir: pathlib.Path, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, min_duration: Optional[int] = None, emotion: Optional[str] = None)[source]#
Bases:
torch.utils.data.dataset.Dataset
Base Dataset class for emonet data.
Construct a dataset.
- Parameters
meta_data (pathlib.Path) – Path to metadata.
data_dir (pathlib.Path) – Path to data directory.
transform (Callable) – Transformer function for input data.
target_transform (Callable) – Transformer function for label data.
min_duration (int) – Minimum duration (seconds) to filter audio files.
emotion (str) – Emotion to retrieve labels/score for.
- __init__(meta_data: pathlib.Path, data_dir: pathlib.Path, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, min_duration: Optional[int] = None, emotion: Optional[str] = None)[source]#
Construct a dataset.
- Parameters
meta_data (pathlib.Path) – Path to metadata.
data_dir (pathlib.Path) – Path to data directory.
transform (Callable) – Transformer function for input data.
target_transform (Callable) – Transformer function for label data.
min_duration (int) – Minimum duration (seconds) to filter audio files.
emotion (str) – Emotion to retrieve labels/score for.
- class emonet.data_loader.TQRegressionDataset(meta_data: pathlib.Path, data_dir: pathlib.Path, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, min_duration: Optional[int] = None, emotion: Optional[str] = None)[source]#
Bases:
emonet.data_loader.TQDataset
Dataset class for running emonet data as regression. Outputs an average score as training input vice an emotion(s) and label(s).
Construct a dataset.
- Parameters
meta_data (pathlib.Path) – Path to metadata.
data_dir (pathlib.Path) – Path to data directory.
transform (Callable) – Transformer function for input data.
target_transform (Callable) – Transformer function for label data.
min_duration (int) – Minimum duration (seconds) to filter audio files.
emotion (str) – Emotion to retrieve labels/score for.
- __init__(meta_data: pathlib.Path, data_dir: pathlib.Path, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, min_duration: Optional[int] = None, emotion: Optional[str] = None)#
Construct a dataset.
- Parameters
meta_data (pathlib.Path) – Path to metadata.
data_dir (pathlib.Path) – Path to data directory.
transform (Callable) – Transformer function for input data.
target_transform (Callable) – Transformer function for label data.
min_duration (int) – Minimum duration (seconds) to filter audio files.
emotion (str) – Emotion to retrieve labels/score for.
- class emonet.data_loader.TQSplitDataset(meta_data: pathlib.Path, data_dir: pathlib.Path, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, min_duration: Optional[int] = None, emotion: Optional[str] = None)[source]#
Bases:
emonet.data_loader.TQDataset
Idea here was to split a single audio sample into multiple n-second samples.
Construct a dataset.
- Parameters
meta_data (pathlib.Path) – Path to metadata.
data_dir (pathlib.Path) – Path to data directory.
transform (Callable) – Transformer function for input data.
target_transform (Callable) – Transformer function for label data.
min_duration (int) – Minimum duration (seconds) to filter audio files.
emotion (str) – Emotion to retrieve labels/score for.
- __init__(meta_data: pathlib.Path, data_dir: pathlib.Path, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, min_duration: Optional[int] = None, emotion: Optional[str] = None)#
Construct a dataset.
- Parameters
meta_data (pathlib.Path) – Path to metadata.
data_dir (pathlib.Path) – Path to data directory.
transform (Callable) – Transformer function for input data.
target_transform (Callable) – Transformer function for label data.
min_duration (int) – Minimum duration (seconds) to filter audio files.
emotion (str) – Emotion to retrieve labels/score for.