emonet.model module
emonet.model module#
Emotion model module.
- class emonet.model.ConvTimeBlock(in_channels: int, out_channels: int, kernel_size: int = 3, stride: int = 1, padding: int = 1, pool_kernel_size: int = 4, pool_stride: int = 4, dropout: float = 0.3)[source]#
Bases:
torch.nn.modules.module.Module
Convolutional time block.
Create a time-distributed convolutional time block.
- Parameters
in_channels (int) – Number of input channels for convolutional layer.
out_channels (int) – Number of output channels for convolutional layer.
kernel_size (int) – Kernel size for convolutional filter.
stride (int) – Stride size for convolutional filter.
padding (int) – Padding size for convolutional filter.
pool_kernel_size (int) – Kernel size for pooling layer.
pool_stride (int) – Stride size for pooling layer.
dropout (float) – Dropout probability.
- __init__(in_channels: int, out_channels: int, kernel_size: int = 3, stride: int = 1, padding: int = 1, pool_kernel_size: int = 4, pool_stride: int = 4, dropout: float = 0.3)[source]#
Create a time-distributed convolutional time block.
- Parameters
in_channels (int) – Number of input channels for convolutional layer.
out_channels (int) – Number of output channels for convolutional layer.
kernel_size (int) – Kernel size for convolutional filter.
stride (int) – Stride size for convolutional filter.
padding (int) – Padding size for convolutional filter.
pool_kernel_size (int) – Kernel size for pooling layer.
pool_stride (int) – Stride size for pooling layer.
dropout (float) – Dropout probability.
- forward(x: torch.Tensor) torch.Tensor [source]#
Pass input through time-distributed convolutional block layer.
- T_destination#
alias of TypeVar(‘T_destination’, bound=
Mapping
[str
,torch.Tensor
])
- add_module(name: str, module: Optional[torch.nn.modules.module.Module]) None #
Adds a child module to the current module.
The module can be accessed as an attribute using the given name.
- Parameters
name (string) – name of the child module. The child module can be accessed from this module using the given name
module (Module) – child module to be added to the module.
- apply(fn: Callable[[torch.nn.modules.module.Module], None]) torch.nn.modules.module.T #
Applies
fn
recursively to every submodule (as returned by.children()
) as well as self. Typical use includes initializing the parameters of a model (see also nn-init-doc).- Parameters
fn (
Module
-> None) – function to be applied to each submodule- Returns
Module – self
Example:
>>> @torch.no_grad() >>> def init_weights(m): >>> print(m) >>> if type(m) == nn.Linear: >>> m.weight.fill_(1.0) >>> print(m.weight) >>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2)) >>> net.apply(init_weights) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[ 1., 1.], [ 1., 1.]]) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[ 1., 1.], [ 1., 1.]]) Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) ) Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )
- bfloat16() torch.nn.modules.module.T #
Casts all floating point parameters and buffers to
bfloat16
datatype.Note
This method modifies the module in-place.
- Returns
Module – self
- buffers(recurse: bool = True) Iterator[torch.Tensor] #
Returns an iterator over module buffers.
- Parameters
recurse (bool) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
- Yields
torch.Tensor – module buffer
Example:
>>> for buf in model.buffers(): >>> print(type(buf), buf.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
- children() Iterator[torch.nn.modules.module.Module] #
Returns an iterator over immediate children modules.
- Yields
Module – a child module
- cpu() torch.nn.modules.module.T #
Moves all model parameters and buffers to the CPU.
Note
This method modifies the module in-place.
- Returns
Module – self
- cuda(device: Optional[Union[int, torch.device]] = None) torch.nn.modules.module.T #
Moves all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on GPU while being optimized.
Note
This method modifies the module in-place.
- Parameters
device (int, optional) – if specified, all parameters will be copied to that device
- Returns
Module – self
- double() torch.nn.modules.module.T #
Casts all floating point parameters and buffers to
double
datatype.Note
This method modifies the module in-place.
- Returns
Module – self
- dump_patches: bool = False#
This allows better BC support for
load_state_dict()
. Instate_dict()
, the version number will be saved as in the attribute _metadata of the returned state dict, and thus pickled. _metadata is a dictionary with keys that follow the naming convention of state dict. See_load_from_state_dict
on how to use this information in loading.If new parameters/buffers are added/removed from a module, this number shall be bumped, and the module’s _load_from_state_dict method can compare the version number and do appropriate changes if the state dict is from before the change.
- eval() torch.nn.modules.module.T #
Sets the module in evaluation mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.This is equivalent with
self.train(False)
.See locally-disable-grad-doc for a comparison between .eval() and several similar mechanisms that may be confused with it.
- Returns
Module – self
- extra_repr() str #
Set the extra representation of the module
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
- float() torch.nn.modules.module.T #
Casts all floating point parameters and buffers to
float
datatype.Note
This method modifies the module in-place.
- Returns
Module – self
- get_buffer(target: str) torch.Tensor #
Returns the buffer given by
target
if it exists, otherwise throws an error.See the docstring for
get_submodule
for a more detailed explanation of this method’s functionality as well as how to correctly specifytarget
.- Parameters
target – The fully-qualified string name of the buffer to look for. (See
get_submodule
for how to specify a fully-qualified string.)- Returns
torch.Tensor – The buffer referenced by
target
- Raises
AttributeError – If the target string references an invalid path or resolves to something that is not a buffer
- get_extra_state() Any #
Returns any extra state to include in the module’s state_dict. Implement this and a corresponding
set_extra_state()
for your module if you need to store extra state. This function is called when building the module’s state_dict().Note that extra state should be pickleable to ensure working serialization of the state_dict. We only provide provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.
- Returns
object – Any extra state to store in the module’s state_dict
- get_parameter(target: str) torch.nn.parameter.Parameter #
Returns the parameter given by
target
if it exists, otherwise throws an error.See the docstring for
get_submodule
for a more detailed explanation of this method’s functionality as well as how to correctly specifytarget
.- Parameters
target – The fully-qualified string name of the Parameter to look for. (See
get_submodule
for how to specify a fully-qualified string.)- Returns
torch.nn.Parameter – The Parameter referenced by
target
- Raises
AttributeError – If the target string references an invalid path or resolves to something that is not an
nn.Parameter
- get_submodule(target: str) torch.nn.modules.module.Module #
Returns the submodule given by
target
if it exists, otherwise throws an error.For example, let’s say you have an
nn.Module
A
that looks like this:(The diagram shows an
nn.Module
A
.A
has a nested submodulenet_b
, which itself has two submodulesnet_c
andlinear
.net_c
then has a submoduleconv
.)To check whether or not we have the
linear
submodule, we would callget_submodule("net_b.linear")
. To check whether we have theconv
submodule, we would callget_submodule("net_b.net_c.conv")
.The runtime of
get_submodule
is bounded by the degree of module nesting intarget
. A query againstnamed_modules
achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists,get_submodule
should always be used.- Parameters
target – The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
- Returns
torch.nn.Module – The submodule referenced by
target
- Raises
AttributeError – If the target string references an invalid path or resolves to something that is not an
nn.Module
- half() torch.nn.modules.module.T #
Casts all floating point parameters and buffers to
half
datatype.Note
This method modifies the module in-place.
- Returns
Module – self
- load_state_dict(state_dict: collections.OrderedDict[str, torch.Tensor], strict: bool = True)#
Copies parameters and buffers from
state_dict
into this module and its descendants. Ifstrict
isTrue
, then the keys ofstate_dict
must exactly match the keys returned by this module’sstate_dict()
function.- Parameters
state_dict (dict) – a dict containing parameters and persistent buffers.
strict (bool, optional) – whether to strictly enforce that the keys in
state_dict
match the keys returned by this module’sstate_dict()
function. Default:True
- Returns
NamedTuple
withmissing_keys
andunexpected_keys
fields – * missing_keys is a list of str containing the missing keys * unexpected_keys is a list of str containing the unexpected keys
Note
If a parameter or buffer is registered as
None
and its corresponding key exists instate_dict
,load_state_dict()
will raise aRuntimeError
.
- modules() Iterator[torch.nn.modules.module.Module] #
Returns an iterator over all modules in the network.
- Yields
Module – a module in the network
Note
Duplicate modules are returned only once. In the following example,
l
will be returned only once.Example:
>>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.modules()): print(idx, '->', m) 0 -> Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) ) 1 -> Linear(in_features=2, out_features=2, bias=True)
- named_buffers(prefix: str = '', recurse: bool = True) Iterator[Tuple[str, torch.Tensor]] #
Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
- Parameters
prefix (str) – prefix to prepend to all buffer names.
recurse (bool) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
- Yields
(string, torch.Tensor) – Tuple containing the name and buffer
Example:
>>> for name, buf in self.named_buffers(): >>> if name in ['running_var']: >>> print(buf.size())
- named_children() Iterator[Tuple[str, torch.nn.modules.module.Module]] #
Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
- Yields
(string, Module) – Tuple containing a name and child module
Example:
>>> for name, module in model.named_children(): >>> if name in ['conv4', 'conv5']: >>> print(module)
- named_modules(memo: Optional[Set[torch.nn.modules.module.Module]] = None, prefix: str = '', remove_duplicate: bool = True)#
Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
- Parameters
memo – a memo to store the set of modules already added to the result
prefix – a prefix that will be added to the name of the module
remove_duplicate – whether to remove the duplicated module instances in the result or not
- Yields
(string, Module) – Tuple of name and module
Note
Duplicate modules are returned only once. In the following example,
l
will be returned only once.Example:
>>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.named_modules()): print(idx, '->', m) 0 -> ('', Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )) 1 -> ('0', Linear(in_features=2, out_features=2, bias=True))
- named_parameters(prefix: str = '', recurse: bool = True) Iterator[Tuple[str, torch.nn.parameter.Parameter]] #
Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
- Parameters
prefix (str) – prefix to prepend to all parameter names.
recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
- Yields
(string, Parameter) – Tuple containing the name and parameter
Example:
>>> for name, param in self.named_parameters(): >>> if name in ['bias']: >>> print(param.size())
- parameters(recurse: bool = True) Iterator[torch.nn.parameter.Parameter] #
Returns an iterator over module parameters.
This is typically passed to an optimizer.
- Parameters
recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
- Yields
Parameter – module parameter
Example:
>>> for param in model.parameters(): >>> print(type(param), param.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
- register_backward_hook(hook: Callable[[torch.nn.modules.module.Module, Union[Tuple[torch.Tensor, ...], torch.Tensor], Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[None, torch.Tensor]]) torch.utils.hooks.RemovableHandle #
Registers a backward hook on the module.
This function is deprecated in favor of
register_full_backward_hook()
and the behavior of this function will change in future versions.- Returns
torch.utils.hooks.RemovableHandle
– a handle that can be used to remove the added hook by callinghandle.remove()
- register_buffer(name: str, tensor: Optional[torch.Tensor], persistent: bool = True) None #
Adds a buffer to the module.
This is typically used to register a buffer that should not to be considered a model parameter. For example, BatchNorm’s
running_mean
is not a parameter, but is part of the module’s state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by settingpersistent
toFalse
. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module’sstate_dict
.Buffers can be accessed as attributes using given names.
- Parameters
name (string) – name of the buffer. The buffer can be accessed from this module using the given name
tensor (Tensor or None) – buffer to be registered. If
None
, then operations that run on buffers, such ascuda
, are ignored. IfNone
, the buffer is not included in the module’sstate_dict
.persistent (bool) – whether the buffer is part of this module’s
state_dict
.
Example:
>>> self.register_buffer('running_mean', torch.zeros(num_features))
- register_forward_hook(hook: Callable[[...], None]) torch.utils.hooks.RemovableHandle #
Registers a forward hook on the module.
The hook will be called every time after
forward()
has computed an output. It should have the following signature:hook(module, input, output) -> None or modified output
The input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to the
forward
. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called afterforward()
is called.- Returns
torch.utils.hooks.RemovableHandle
– a handle that can be used to remove the added hook by callinghandle.remove()
- register_forward_pre_hook(hook: Callable[[...], None]) torch.utils.hooks.RemovableHandle #
Registers a forward pre-hook on the module.
The hook will be called every time before
forward()
is invoked. It should have the following signature:hook(module, input) -> None or modified input
The input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to the
forward
. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned(unless that value is already a tuple).- Returns
torch.utils.hooks.RemovableHandle
– a handle that can be used to remove the added hook by callinghandle.remove()
- register_full_backward_hook(hook: Callable[[torch.nn.modules.module.Module, Union[Tuple[torch.Tensor, ...], torch.Tensor], Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[None, torch.Tensor]]) torch.utils.hooks.RemovableHandle #
Registers a backward hook on the module.
The hook will be called every time the gradients with respect to module inputs are computed. The hook should have the following signature:
hook(module, grad_input, grad_output) -> tuple(Tensor) or None
The
grad_input
andgrad_output
are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place ofgrad_input
in subsequent computations.grad_input
will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries ingrad_input
andgrad_output
will beNone
for all non-Tensor arguments.For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module’s forward function.
Warning
Modifying inputs or outputs inplace is not allowed when using backward hooks and will raise an error.
- Returns
torch.utils.hooks.RemovableHandle
– a handle that can be used to remove the added hook by callinghandle.remove()
- register_module(name: str, module: Optional[torch.nn.modules.module.Module]) None #
Alias for
add_module()
.
- register_parameter(name: str, param: Optional[torch.nn.parameter.Parameter]) None #
Adds a parameter to the module.
The parameter can be accessed as an attribute using given name.
- Parameters
name (string) – name of the parameter. The parameter can be accessed from this module using the given name
param (Parameter or None) – parameter to be added to the module. If
None
, then operations that run on parameters, such ascuda
, are ignored. IfNone
, the parameter is not included in the module’sstate_dict
.
- requires_grad_(requires_grad: bool = True) torch.nn.modules.module.T #
Change if autograd should record operations on parameters in this module.
This method sets the parameters’
requires_grad
attributes in-place.This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).
See locally-disable-grad-doc for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.
- Parameters
requires_grad (bool) – whether autograd should record operations on parameters in this module. Default:
True
.- Returns
Module – self
- set_extra_state(state: Any)#
This function is called from
load_state_dict()
to handle any extra state found within the state_dict. Implement this function and a correspondingget_extra_state()
for your module if you need to store extra state within its state_dict.- Parameters
state (dict) – Extra state from the state_dict
See
torch.Tensor.share_memory_()
- state_dict(destination=None, prefix='', keep_vars=False)#
Returns a dictionary containing a whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to
None
are not included.- Returns
dict – a dictionary containing a whole state of the module
Example:
>>> module.state_dict().keys() ['bias', 'weight']
- to(*args, **kwargs)#
Moves and/or casts the parameters and buffers.
This can be called as
- to(device=None, dtype=None, non_blocking=False)
- to(dtype, non_blocking=False)
- to(tensor, non_blocking=False)
- to(memory_format=torch.channels_last)
Its signature is similar to
torch.Tensor.to()
, but only accepts floating point or complexdtype
s. In addition, this method will only cast the floating point or complex parameters and buffers todtype
(if given). The integral parameters and buffers will be moveddevice
, if that is given, but with dtypes unchanged. Whennon_blocking
is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.See below for examples.
Note
This method modifies the module in-place.
- Parameters
device (
torch.device
) – the desired device of the parameters and buffers in this moduledtype (
torch.dtype
) – the desired floating point or complex dtype of the parameters and buffers in this moduletensor (torch.Tensor) – Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module
memory_format (
torch.memory_format
) – the desired memory format for 4D parameters and buffers in this module (keyword only argument)
- Returns
Module – self
Examples:
>>> linear = nn.Linear(2, 2) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]]) >>> linear.to(torch.double) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]], dtype=torch.float64) >>> gpu1 = torch.device("cuda:1") >>> linear.to(gpu1, dtype=torch.half, non_blocking=True) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1') >>> cpu = torch.device("cpu") >>> linear.to(cpu) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16) >>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble) >>> linear.weight Parameter containing: tensor([[ 0.3741+0.j, 0.2382+0.j], [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128) >>> linear(torch.ones(3, 2, dtype=torch.cdouble)) tensor([[0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)
- to_empty(*, device: Union[str, torch.device]) torch.nn.modules.module.T #
Moves the parameters and buffers to the specified device without copying storage.
- Parameters
device (
torch.device
) – The desired device of the parameters and buffers in this module.- Returns
Module – self
- train(mode: bool = True) torch.nn.modules.module.T #
Sets the module in training mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.- Parameters
mode (bool) – whether to set training mode (
True
) or evaluation mode (False
). Default:True
.- Returns
Module – self
- type(dst_type: Union[torch.dtype, str]) torch.nn.modules.module.T #
Casts all parameters and buffers to
dst_type
.Note
This method modifies the module in-place.
- Parameters
dst_type (type or string) – the desired type
- Returns
Module – self
- xpu(device: Optional[Union[int, torch.device]] = None) torch.nn.modules.module.T #
Moves all model parameters and buffers to the XPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on XPU while being optimized.
Note
This method modifies the module in-place.
- Parameters
device (int, optional) – if specified, all parameters will be copied to that device
- Returns
Module – self
- zero_grad(set_to_none: bool = False) None #
Sets gradients of all model parameters to zero. See similar function under
torch.optim.Optimizer
for more context.- Parameters
set_to_none (bool) – instead of setting to zero, set the grads to None. See
torch.optim.Optimizer.zero_grad()
for details.
- training: bool#
- class emonet.model.EmotionRegressor(emotion: str, lr: float = 0.001, weight_decay: float = 0.01, snr_low: int = 15, snr_high: int = 30, freq_mask: int = 20, time_mask: int = 20, drop: float = 0.3, n_mels: int = 128, n_fft: int = 768, n_chunks: int = 10)[source]#
Bases:
pytorch_lightning.core.lightning.LightningModule
Emotion regressor model.
- Parameters
emotion (str) – Emotion to train/score.
lr (float) – Learning rate.
weight_decay (float) – Weight decay for optimizer.
snr_low (int) – Signal-to-noise ratio floor for additive white noise augmentation.
snr_high (int) – Signal-to-noise ratio ceiling for additive white noise augmentation.
freq_mask (int) – Size of frequency mask for data augmentation.
time_mask (int) – Size of time mask for data augmentation.
drop (float) – Dropout rate.
n_mels (int) – Number of mel filterbanks.
n_fft (int) – Size of FFT, creates n_fft // 2 + 1 bins.
n_chunks (int) – Number of time-chunks to create from each sample.
- __init__(emotion: str, lr: float = 0.001, weight_decay: float = 0.01, snr_low: int = 15, snr_high: int = 30, freq_mask: int = 20, time_mask: int = 20, drop: float = 0.3, n_mels: int = 128, n_fft: int = 768, n_chunks: int = 10)[source]#
- Parameters
emotion (str) – Emotion to train/score.
lr (float) – Learning rate.
weight_decay (float) – Weight decay for optimizer.
snr_low (int) – Signal-to-noise ratio floor for additive white noise augmentation.
snr_high (int) – Signal-to-noise ratio ceiling for additive white noise augmentation.
freq_mask (int) – Size of frequency mask for data augmentation.
time_mask (int) – Size of time mask for data augmentation.
drop (float) – Dropout rate.
n_mels (int) – Number of mel filterbanks.
n_fft (int) – Size of FFT, creates n_fft // 2 + 1 bins.
n_chunks (int) – Number of time-chunks to create from each sample.
- augment_pipe(choice, bs)[source]#
Data augmentation pipeline.
- Parameters
choice (int) – Random choice for augmentation.
bs (int) – Batch size.
- Returns
nn.Sequential – Augmentation pipeline.
- get_results(spec, actual)[source]#
Get model results.
- Parameters
spec (torch.tensor) – Spectrogram.
actual (float) – Actual emotion score.
- Returns
Dict – Dictionary of model results.
- score_file(file, sample_rate=16000, vad=True)[source]#
Score a WAV file.
Splits audio signal into separate 8-second chunks, individually scores each and returns mean across splits as final score.
- Parameters
file (Union[str, pathlib.Path]) – Filepath to audio file.
sample_rate (int) – Sample rate of audio file; default 16,000hz
vad (bool) – Whether to implement voice activity detection as preprocessing step; default True.
- Returns
float – Emotion score.
- score_signal(x, vad=True)[source]#
Score a tensor.
Splits audio signal into separate 8-second chunks, individually scores each and returns mean across splits as final score.
- Parameters
x (torch.Tensor) – Audio signal to score.
vad (bool) – Whether to implement voice activity detection as preprocessing step; default True.
- Returns
float – Emotion score.
- forward(x)[source]#
Score a preprocessed tensor.
Splits audio signal into separate 8-second chunks, individually scores each and returns mean across splits as final score.
- Parameters
x (torch.Tensor)
- Returns
float – Emotion score.
- CHECKPOINT_HYPER_PARAMS_KEY = 'hyper_parameters'#
- CHECKPOINT_HYPER_PARAMS_NAME = 'hparams_name'#
- CHECKPOINT_HYPER_PARAMS_TYPE = 'hparams_type'#
- T_destination#
alias of TypeVar(‘T_destination’, bound=
Mapping
[str
,torch.Tensor
])
- add_module(name: str, module: Optional[torch.nn.modules.module.Module]) None #
Adds a child module to the current module.
The module can be accessed as an attribute using the given name.
- Parameters
name (string) – name of the child module. The child module can be accessed from this module using the given name
module (Module) – child module to be added to the module.
- add_to_queue(queue: pytorch_lightning.strategies.launchers.spawn._FakeQueue) None #
Appends the
trainer.callback_metrics
dictionary to the given queue. To avoid issues with memory sharing, we cast the data to numpy.- Parameters
queue – the instance of the queue to append the data.
Deprecated since version v1.5: This method was deprecated in v1.5 and will be removed in v1.7.
- all_gather(data: Union[torch.Tensor, Dict, List, Tuple], group: Optional[Any] = None, sync_grads: bool = False)#
Allows users to call
self.all_gather()
from the LightningModule, thus making theall_gather
operation accelerator agnostic.all_gather
is a function provided by accelerators to gather a tensor from several distributed processes.- Parameters
data – int, float, tensor of shape (batch, …), or a (possibly nested) collection thereof.
group – the process group to gather results from. Defaults to all processes (world)
sync_grads – flag that allows users to synchronize gradients for the all_gather operation
- Returns
A tensor of shape (world_size, batch, …), or if the input was a collection the output will also be a collection with tensors of this shape.
- apply(fn: Callable[[torch.nn.modules.module.Module], None]) torch.nn.modules.module.T #
Applies
fn
recursively to every submodule (as returned by.children()
) as well as self. Typical use includes initializing the parameters of a model (see also nn-init-doc).- Parameters
fn (
Module
-> None) – function to be applied to each submodule- Returns
Module – self
Example:
>>> @torch.no_grad() >>> def init_weights(m): >>> print(m) >>> if type(m) == nn.Linear: >>> m.weight.fill_(1.0) >>> print(m.weight) >>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2)) >>> net.apply(init_weights) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[ 1., 1.], [ 1., 1.]]) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[ 1., 1.], [ 1., 1.]]) Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) ) Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )
- property automatic_optimization: bool#
If set to
False
you are responsible for calling.backward()
,.step()
,.zero_grad()
.
- backward(loss: torch.Tensor, optimizer: Optional[torch.optim.optimizer.Optimizer], optimizer_idx: Optional[int], *args, **kwargs) None #
Called to perform backward on the loss returned in
training_step()
. Override this hook with your own implementation if you need to.- Parameters
loss – The loss tensor returned by
training_step()
. If gradient accumulation is used, the loss here holds the normalized value (scaled by 1 / accumulation steps).optimizer – Current optimizer being used.
None
if using manual optimization.optimizer_idx – Index of the current optimizer being used.
None
if using manual optimization.
Example:
def backward(self, loss, optimizer, optimizer_idx): loss.backward()
- bfloat16() torch.nn.modules.module.T #
Casts all floating point parameters and buffers to
bfloat16
datatype.Note
This method modifies the module in-place.
- Returns
Module – self
- buffers(recurse: bool = True) Iterator[torch.Tensor] #
Returns an iterator over module buffers.
- Parameters
recurse (bool) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
- Yields
torch.Tensor – module buffer
Example:
>>> for buf in model.buffers(): >>> print(type(buf), buf.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
- children() Iterator[torch.nn.modules.module.Module] #
Returns an iterator over immediate children modules.
- Yields
Module – a child module
- clip_gradients(optimizer: torch.optim.optimizer.Optimizer, gradient_clip_val: Optional[Union[int, float]] = None, gradient_clip_algorithm: Optional[str] = None)#
Handles gradient clipping internally.
Note
Do not override this method. If you want to customize gradient clipping, consider using
configure_gradient_clipping()
method.- Parameters
optimizer – Current optimizer being used.
gradient_clip_val – The value at which to clip gradients.
gradient_clip_algorithm – The gradient clipping algorithm to use. Pass
gradient_clip_algorithm="value"
to clip by value, andgradient_clip_algorithm="norm"
to clip by norm.
- configure_callbacks() Union[Sequence[pytorch_lightning.callbacks.base.Callback], pytorch_lightning.callbacks.base.Callback] #
Configure model-specific callbacks. When the model gets attached, e.g., when
.fit()
or.test()
gets called, the list or a callback returned here will be merged with the list of callbacks passed to the Trainer’scallbacks
argument. If a callback returned here has the same type as one or several callbacks already present in the Trainer’s callbacks list, it will take priority and replace them. In addition, Lightning will make sureModelCheckpoint
callbacks run last.- Returns
A callback or a list of callbacks which will extend the list of callbacks in the Trainer.
Example:
def configure_callbacks(self): early_stop = EarlyStopping(monitor="val_acc", mode="max") checkpoint = ModelCheckpoint(monitor="val_loss") return [early_stop, checkpoint]
Note
Certain callback methods like
on_init_start()
will never be invoked on the new callbacks returned here.
- configure_gradient_clipping(optimizer: torch.optim.optimizer.Optimizer, optimizer_idx: int, gradient_clip_val: Optional[Union[int, float]] = None, gradient_clip_algorithm: Optional[str] = None)#
Perform gradient clipping for the optimizer parameters. Called before
optimizer_step()
.- Parameters
optimizer – Current optimizer being used.
optimizer_idx – Index of the current optimizer being used.
gradient_clip_val – The value at which to clip gradients. By default value passed in Trainer will be available here.
gradient_clip_algorithm – The gradient clipping algorithm to use. By default value passed in Trainer will be available here.
Example:
# Perform gradient clipping on gradients associated with discriminator (optimizer_idx=1) in GAN def configure_gradient_clipping(self, optimizer, optimizer_idx, gradient_clip_val, gradient_clip_algorithm): if optimizer_idx == 1: # Lightning will handle the gradient clipping self.clip_gradients( optimizer, gradient_clip_val=gradient_clip_val, gradient_clip_algorithm=gradient_clip_algorithm ) else: # implement your own custom logic to clip gradients for generator (optimizer_idx=0)
- configure_sharded_model() None #
Hook to create modules in a distributed aware context. This is useful for when using sharded plugins, where we’d like to shard the model instantly, which is useful for extremely large models which can save memory and initialization time.
This hook is called during each of fit/val/test/predict stages in the same process, so ensure that implementation of this hook is idempotent.
- cpu() typing_extensions.Self #
Moves all model parameters and buffers to the CPU.
- Returns
Module – self
- cuda(device: Optional[Union[int, torch.device]] = None) typing_extensions.Self #
Moves all model parameters and buffers to the GPU. This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on GPU while being optimized.
- Parameters
device – if specified, all parameters will be copied to that device
- Returns
Module – self
- property current_epoch: int#
The current epoch in the
Trainer
, or 0 if not attached.
- property device: Union[str, torch.device]#
- double() typing_extensions.Self #
Casts all floating point parameters and buffers to
double
datatype.- Returns
Module – self
- property dtype: Union[str, torch.dtype]#
- dump_patches: bool = False#
This allows better BC support for
load_state_dict()
. Instate_dict()
, the version number will be saved as in the attribute _metadata of the returned state dict, and thus pickled. _metadata is a dictionary with keys that follow the naming convention of state dict. See_load_from_state_dict
on how to use this information in loading.If new parameters/buffers are added/removed from a module, this number shall be bumped, and the module’s _load_from_state_dict method can compare the version number and do appropriate changes if the state dict is from before the change.
- eval() torch.nn.modules.module.T #
Sets the module in evaluation mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.This is equivalent with
self.train(False)
.See locally-disable-grad-doc for a comparison between .eval() and several similar mechanisms that may be confused with it.
- Returns
Module – self
- property example_input_array: Any#
The example input array is a specification of what the module can consume in the
forward()
method. The return type is interpreted as follows:Single tensor: It is assumed the model takes a single argument, i.e.,
model.forward(model.example_input_array)
Tuple: The input array should be interpreted as a sequence of positional arguments, i.e.,
model.forward(*model.example_input_array)
Dict: The input array represents named keyword arguments, i.e.,
model.forward(**model.example_input_array)
- extra_repr() str #
Set the extra representation of the module
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
- float() typing_extensions.Self #
Casts all floating point parameters and buffers to
float
datatype.- Returns
Module – self
- freeze() None #
Freeze all params for inference.
Example:
model = MyLightningModule(...) model.freeze()
- get_buffer(target: str) torch.Tensor #
Returns the buffer given by
target
if it exists, otherwise throws an error.See the docstring for
get_submodule
for a more detailed explanation of this method’s functionality as well as how to correctly specifytarget
.- Parameters
target – The fully-qualified string name of the buffer to look for. (See
get_submodule
for how to specify a fully-qualified string.)- Returns
torch.Tensor – The buffer referenced by
target
- Raises
AttributeError – If the target string references an invalid path or resolves to something that is not a buffer
- get_extra_state() Any #
Returns any extra state to include in the module’s state_dict. Implement this and a corresponding
set_extra_state()
for your module if you need to store extra state. This function is called when building the module’s state_dict().Note that extra state should be pickleable to ensure working serialization of the state_dict. We only provide provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.
- Returns
object – Any extra state to store in the module’s state_dict
- get_from_queue(queue: pytorch_lightning.strategies.launchers.spawn._FakeQueue) None #
Retrieve the
trainer.callback_metrics
dictionary from the given queue. To preserve consistency, we cast back the data totorch.Tensor
.- Parameters
queue – the instance of the queue from where to get the data.
Deprecated since version v1.5: This method was deprecated in v1.5 and will be removed in v1.7.
- get_parameter(target: str) torch.nn.parameter.Parameter #
Returns the parameter given by
target
if it exists, otherwise throws an error.See the docstring for
get_submodule
for a more detailed explanation of this method’s functionality as well as how to correctly specifytarget
.- Parameters
target – The fully-qualified string name of the Parameter to look for. (See
get_submodule
for how to specify a fully-qualified string.)- Returns
torch.nn.Parameter – The Parameter referenced by
target
- Raises
AttributeError – If the target string references an invalid path or resolves to something that is not an
nn.Parameter
- get_progress_bar_dict() Dict[str, Union[str, int]] #
Deprecated since version v1.5: This method was deprecated in v1.5 in favor of pytorch_lightning.callbacks.progress.base.get_metrics and will be removed in v1.7.
Implement this to override the default items displayed in the progress bar. By default it includes the average loss value, split index of BPTT (if used) and the version of the experiment when using a logger.
Epoch 1: 4%|▎ | 40/1095 [00:03<01:37, 10.84it/s, loss=4.501, v_num=10]
Here is an example how to override the defaults:
def get_progress_bar_dict(self): # don't show the version number items = super().get_progress_bar_dict() items.pop("v_num", None) return items
- Returns
Dictionary with the items to be displayed in the progress bar.
- get_submodule(target: str) torch.nn.modules.module.Module #
Returns the submodule given by
target
if it exists, otherwise throws an error.For example, let’s say you have an
nn.Module
A
that looks like this:(The diagram shows an
nn.Module
A
.A
has a nested submodulenet_b
, which itself has two submodulesnet_c
andlinear
.net_c
then has a submoduleconv
.)To check whether or not we have the
linear
submodule, we would callget_submodule("net_b.linear")
. To check whether we have theconv
submodule, we would callget_submodule("net_b.net_c.conv")
.The runtime of
get_submodule
is bounded by the degree of module nesting intarget
. A query againstnamed_modules
achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists,get_submodule
should always be used.- Parameters
target – The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)
- Returns
torch.nn.Module – The submodule referenced by
target
- Raises
AttributeError – If the target string references an invalid path or resolves to something that is not an
nn.Module
- property global_rank: int#
The index of the current process across all nodes and devices.
- property global_step: int#
Total training batches seen across all epochs.
If no Trainer is attached, this propery is 0.
- half() typing_extensions.Self #
Casts all floating point parameters and buffers to
half
datatype.- Returns
Module – self
- property hparams: Union[pytorch_lightning.utilities.parsing.AttributeDict, MutableMapping]#
The collection of hyperparameters saved with
save_hyperparameters()
. It is mutable by the user. For the frozen set of initial hyperparameters, usehparams_initial
.- Returns
Mutable hyperparameters dictionary
- property hparams_initial: pytorch_lightning.utilities.parsing.AttributeDict#
The collection of hyperparameters saved with
save_hyperparameters()
. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed throughhparams
.- Returns
AttributeDict – immutable initial hyperparameters
- classmethod load_from_checkpoint(checkpoint_path: Union[str, IO], map_location: Optional[Union[Dict[str, str], str, torch.device, int, Callable]] = None, hparams_file: Optional[str] = None, strict: bool = True, **kwargs)#
Primary way of loading a model from a checkpoint. When Lightning saves a checkpoint it stores the arguments passed to
__init__
in the checkpoint under"hyper_parameters"
.Any arguments specified through **kwargs will override args stored in
"hyper_parameters"
.- Parameters
checkpoint_path – Path to checkpoint. This can also be a URL, or file-like object
map_location – If your checkpoint saved a GPU model and you now load on CPUs or a different number of GPUs, use this to map to the new setup. The behaviour is the same as in
torch.load()
.hparams_file – Optional path to a .yaml file with hierarchical structure as in this example:
drop_prob: 0.2 dataloader: batch_size: 32
You most likely won’t need this since Lightning will always save the hyperparameters to the checkpoint. However, if your checkpoint weights don’t have the hyperparameters saved, use this method to pass in a .yaml file with the hparams you’d like to use. These will be converted into a
dict
and passed into yourLightningModule
for use.If your model’s
hparams
argument isNamespace
and .yaml file has hierarchical structure, you need to refactor your model to treathparams
asdict
.strict – Whether to strictly enforce that the keys in
checkpoint_path
match the keys returned by this module’s state dict.kwargs – Any extra keyword args needed to init the model. Can also be used to override saved hyperparameter values.
- Returns
LightningModule
instance with loaded weights and hyperparameters (if available).
Note
load_from_checkpoint
is a class method. You should use yourLightningModule
class to call it instead of theLightningModule
instance.Example:
# load weights without mapping ... model = MyLightningModule.load_from_checkpoint('path/to/checkpoint.ckpt') # or load weights mapping all weights from GPU 1 to GPU 0 ... map_location = {'cuda:1':'cuda:0'} model = MyLightningModule.load_from_checkpoint( 'path/to/checkpoint.ckpt', map_location=map_location ) # or load weights and hyperparameters from separate files. model = MyLightningModule.load_from_checkpoint( 'path/to/checkpoint.ckpt', hparams_file='/path/to/hparams_file.yaml' ) # override some of the params with new values model = MyLightningModule.load_from_checkpoint( PATH, num_layers=128, pretrained_ckpt_path=NEW_PATH, ) # predict pretrained_model.eval() pretrained_model.freeze() y_hat = pretrained_model(x)
- load_state_dict(state_dict: collections.OrderedDict[str, torch.Tensor], strict: bool = True)#
Copies parameters and buffers from
state_dict
into this module and its descendants. Ifstrict
isTrue
, then the keys ofstate_dict
must exactly match the keys returned by this module’sstate_dict()
function.- Parameters
state_dict (dict) – a dict containing parameters and persistent buffers.
strict (bool, optional) – whether to strictly enforce that the keys in
state_dict
match the keys returned by this module’sstate_dict()
function. Default:True
- Returns
NamedTuple
withmissing_keys
andunexpected_keys
fields – * missing_keys is a list of str containing the missing keys * unexpected_keys is a list of str containing the unexpected keys
Note
If a parameter or buffer is registered as
None
and its corresponding key exists instate_dict
,load_state_dict()
will raise aRuntimeError
.
- property local_rank: int#
The index of the current process within a single node.
- log(name: str, value: Union[torchmetrics.metric.Metric, torch.Tensor, int, float, Mapping[str, Union[torchmetrics.metric.Metric, torch.Tensor, int, float]]], prog_bar: bool = False, logger: bool = True, on_step: Optional[bool] = None, on_epoch: Optional[bool] = None, reduce_fx: Union[str, Callable] = 'mean', enable_graph: bool = False, sync_dist: bool = False, sync_dist_group: Optional[Any] = None, add_dataloader_idx: bool = True, batch_size: Optional[int] = None, metric_attribute: Optional[str] = None, rank_zero_only: bool = False) None #
Log a key, value pair.
Example:
self.log('train_loss', loss)
The default behavior per hook is documented here: extensions/logging:Automatic Logging.
- Parameters
name – key to log.
value – value to log. Can be a
float
,Tensor
,Metric
, or a dictionary of the former.prog_bar – if
True
logs to the progress bar.logger – if
True
logs to the logger.on_step – if
True
logs at this step. The default value is determined by the hook. See extensions/logging:Automatic Logging for details.on_epoch – if
True
logs epoch accumulated metrics. The default value is determined by the hook. See extensions/logging:Automatic Logging for details.reduce_fx – reduction function over step values for end of epoch.
torch.mean()
by default.enable_graph – if
True
, will not auto detach the graph.sync_dist – if
True
, reduces the metric across devices. Use with care as this may lead to a significant communication overhead.sync_dist_group – the DDP group to sync across.
add_dataloader_idx – if
True
, appends the index of the current dataloader to the name (when using multiple dataloaders). If False, user needs to give unique names for each dataloader to not mix the values.batch_size – Current batch_size. This will be directly inferred from the loaded batch, but for some data structures you might need to explicitly provide it.
metric_attribute – To restore the metric state, Lightning requires the reference of the
torchmetrics.Metric
in your model. This is found automatically if it is a model attribute.rank_zero_only – Whether the value will be logged only on rank 0. This will prevent synchronization which would produce a deadlock as not all processes would perform this log call.
- log_dict(dictionary: Mapping[str, Union[torchmetrics.metric.Metric, torch.Tensor, int, float, Mapping[str, Union[torchmetrics.metric.Metric, torch.Tensor, int, float]]]], prog_bar: bool = False, logger: bool = True, on_step: Optional[bool] = None, on_epoch: Optional[bool] = None, reduce_fx: Union[str, Callable] = 'mean', enable_graph: bool = False, sync_dist: bool = False, sync_dist_group: Optional[Any] = None, add_dataloader_idx: bool = True, batch_size: Optional[int] = None, rank_zero_only: bool = False) None #
Log a dictionary of values at once.
Example:
values = {'loss': loss, 'acc': acc, ..., 'metric_n': metric_n} self.log_dict(values)
- Parameters
dictionary – key value pairs. The values can be a
float
,Tensor
,Metric
, or a dictionary of the former.prog_bar – if
True
logs to the progress base.logger – if
True
logs to the logger.on_step – if
True
logs at this step.None
auto-logs for training_step but not validation/test_step. The default value is determined by the hook. See extensions/logging:Automatic Logging for details.on_epoch – if
True
logs epoch accumulated metrics.None
auto-logs for val/test step but nottraining_step
. The default value is determined by the hook. See extensions/logging:Automatic Logging for details.reduce_fx – reduction function over step values for end of epoch.
torch.mean()
by default.enable_graph – if
True
, will not auto-detach the graphsync_dist – if
True
, reduces the metric across GPUs/TPUs. Use with care as this may lead to a significant communication overhead.sync_dist_group – the ddp group to sync across.
add_dataloader_idx – if
True
, appends the index of the current dataloader to the name (when using multiple). IfFalse
, user needs to give unique names for each dataloader to not mix values.batch_size – Current batch size. This will be directly inferred from the loaded batch, but some data structures might need to explicitly provide it.
rank_zero_only – Whether the value will be logged only on rank 0. This will prevent synchronization which would produce a deadlock as not all processes would perform this log call.
- log_grad_norm(grad_norm_dict: Dict[str, float]) None #
Override this method to change the default behaviour of
log_grad_norm
.If clipping gradients, the gradients will not have been clipped yet.
- Parameters
grad_norm_dict – Dictionary containing current grad norm metrics
Example:
# DEFAULT def log_grad_norm(self, grad_norm_dict): self.log_dict(grad_norm_dict, on_step=True, on_epoch=True, prog_bar=False, logger=True)
- property logger: Optional[pytorch_lightning.loggers.base.LightningLoggerBase]#
Reference to the logger object in the Trainer.
- property loggers: List[pytorch_lightning.loggers.base.LightningLoggerBase]#
Reference to the list of loggers in the Trainer.
- lr_scheduler_step(scheduler: Union[torch.optim.lr_scheduler._LRScheduler, torch.optim.lr_scheduler.ReduceLROnPlateau], optimizer_idx: int, metric: Optional[Any]) None #
Override this method to adjust the default way the
Trainer
calls each scheduler. By default, Lightning callsstep()
and as shown in the example for each scheduler based on itsinterval
.- Parameters
scheduler – Learning rate scheduler.
optimizer_idx – Index of the optimizer associated with this scheduler.
metric – Value of the monitor used for schedulers like
ReduceLROnPlateau
.
Examples:
# DEFAULT def lr_scheduler_step(self, scheduler, optimizer_idx, metric): if metric is None: scheduler.step() else: scheduler.step(metric) # Alternative way to update schedulers if it requires an epoch value def lr_scheduler_step(self, scheduler, optimizer_idx, metric): scheduler.step(epoch=self.current_epoch)
- lr_schedulers() Optional[Union[torch.optim.lr_scheduler._LRScheduler, torch.optim.lr_scheduler.ReduceLROnPlateau, List[Union[torch.optim.lr_scheduler._LRScheduler, torch.optim.lr_scheduler.ReduceLROnPlateau]]]] #
Returns the learning rate scheduler(s) that are being used during training. Useful for manual optimization.
- Returns
A single scheduler, or a list of schedulers in case multiple ones are present, or
None
if no schedulers were returned inconfigure_optimizers()
.
- manual_backward(loss: torch.Tensor, *args, **kwargs) None #
Call this directly from your
training_step()
when doing optimizations manually. By using this, Lightning can ensure that all the proper scaling gets applied when using mixed precision.See manual optimization for more examples.
Example:
def training_step(...): opt = self.optimizers() loss = ... opt.zero_grad() # automatically applies scaling, etc... self.manual_backward(loss) opt.step()
- Parameters
loss – The tensor on which to compute gradients. Must have a graph attached.
*args – Additional positional arguments to be forwarded to
backward()
**kwargs – Additional keyword arguments to be forwarded to
backward()
- property model_size: float#
Returns the model size in MegaBytes (MB)
Note
This property will not return correct value for Deepspeed (stage 3) and fully-sharded training.
- modules() Iterator[torch.nn.modules.module.Module] #
Returns an iterator over all modules in the network.
- Yields
Module – a module in the network
Note
Duplicate modules are returned only once. In the following example,
l
will be returned only once.Example:
>>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.modules()): print(idx, '->', m) 0 -> Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) ) 1 -> Linear(in_features=2, out_features=2, bias=True)
- named_buffers(prefix: str = '', recurse: bool = True) Iterator[Tuple[str, torch.Tensor]] #
Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
- Parameters
prefix (str) – prefix to prepend to all buffer names.
recurse (bool) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.
- Yields
(string, torch.Tensor) – Tuple containing the name and buffer
Example:
>>> for name, buf in self.named_buffers(): >>> if name in ['running_var']: >>> print(buf.size())
- named_children() Iterator[Tuple[str, torch.nn.modules.module.Module]] #
Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
- Yields
(string, Module) – Tuple containing a name and child module
Example:
>>> for name, module in model.named_children(): >>> if name in ['conv4', 'conv5']: >>> print(module)
- named_modules(memo: Optional[Set[torch.nn.modules.module.Module]] = None, prefix: str = '', remove_duplicate: bool = True)#
Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
- Parameters
memo – a memo to store the set of modules already added to the result
prefix – a prefix that will be added to the name of the module
remove_duplicate – whether to remove the duplicated module instances in the result or not
- Yields
(string, Module) – Tuple of name and module
Note
Duplicate modules are returned only once. In the following example,
l
will be returned only once.Example:
>>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.named_modules()): print(idx, '->', m) 0 -> ('', Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )) 1 -> ('0', Linear(in_features=2, out_features=2, bias=True))
- named_parameters(prefix: str = '', recurse: bool = True) Iterator[Tuple[str, torch.nn.parameter.Parameter]] #
Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
- Parameters
prefix (str) – prefix to prepend to all parameter names.
recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
- Yields
(string, Parameter) – Tuple containing the name and parameter
Example:
>>> for name, param in self.named_parameters(): >>> if name in ['bias']: >>> print(param.size())
- on_after_backward() None #
Called after
loss.backward()
and before optimizers are stepped.Note
If using native AMP, the gradients will not be unscaled at this point. Use the
on_before_optimizer_step
if you need the unscaled gradients.
- on_after_batch_transfer(batch: Any, dataloader_idx: int) Any #
Override to alter or apply batch augmentations to your batch after it is transferred to the device.
Note
To check the current state of execution of this hook you can use
self.trainer.training/testing/validating/predicting
so that you can add different logic as per your requirement.Note
This hook only runs on single GPU training and DDP (no data-parallel). Data-Parallel support will come in near future.
- Parameters
batch – A batch of data that needs to be altered or augmented.
dataloader_idx – The index of the dataloader to which the batch belongs.
- Returns
A batch of data
Example:
def on_after_batch_transfer(self, batch, dataloader_idx): batch['x'] = gpu_transforms(batch['x']) return batch
- Raises
MisconfigurationException – If using data-parallel,
Trainer(strategy='dp')
.
- on_before_backward(loss: torch.Tensor) None #
Called before
loss.backward()
.- Parameters
loss – Loss divided by number of batches for gradient accumulation and scaled if using native AMP.
- on_before_batch_transfer(batch: Any, dataloader_idx: int) Any #
Override to alter or apply batch augmentations to your batch before it is transferred to the device.
Note
To check the current state of execution of this hook you can use
self.trainer.training/testing/validating/predicting
so that you can add different logic as per your requirement.Note
This hook only runs on single GPU training and DDP (no data-parallel). Data-Parallel support will come in near future.
- Parameters
batch – A batch of data that needs to be altered or augmented.
dataloader_idx – The index of the dataloader to which the batch belongs.
- Returns
A batch of data
Example:
def on_before_batch_transfer(self, batch, dataloader_idx): batch['x'] = transforms(batch['x']) return batch
- Raises
MisconfigurationException – If using data-parallel,
Trainer(strategy='dp')
.
- on_before_optimizer_step(optimizer: torch.optim.optimizer.Optimizer, optimizer_idx: int) None #
Called before
optimizer.step()
.If using gradient accumulation, the hook is called once the gradients have been accumulated. See: :paramref:`~pytorch_lightning.trainer.Trainer.accumulate_grad_batches`.
If using native AMP, the loss will be unscaled before calling this hook. See these docs for more information on the scaling of gradients.
If clipping gradients, the gradients will not have been clipped yet.
- Parameters
optimizer – Current optimizer being used.
optimizer_idx – Index of the current optimizer being used.
Example:
def on_before_optimizer_step(self, optimizer, optimizer_idx): # example to inspect gradient information in tensorboard if self.trainer.global_step % 25 == 0: # don't make the tf file huge for k, v in self.named_parameters(): self.logger.experiment.add_histogram( tag=k, values=v.grad, global_step=self.trainer.global_step )
- on_before_zero_grad(optimizer: torch.optim.optimizer.Optimizer) None #
Called after
training_step()
and beforeoptimizer.zero_grad()
.Called in the training loop after taking an optimizer step and before zeroing grads. Good place to inspect weight information with weights updated.
This is where it is called:
for optimizer in optimizers: out = training_step(...) model.on_before_zero_grad(optimizer) # < ---- called here optimizer.zero_grad() backward()
- Parameters
optimizer – The optimizer for which grads should be zeroed.
- on_epoch_end() None #
Called when either of train/val/test epoch ends.
Deprecated since version v1.6:
on_epoch_end()
has been deprecated in v1.6 and will be removed in v1.8. Useon_<train/validation/test>_epoch_end
instead.
- on_epoch_start() None #
Called when either of train/val/test epoch begins.
Deprecated since version v1.6:
on_epoch_start()
has been deprecated in v1.6 and will be removed in v1.8. Useon_<train/validation/test>_epoch_start
instead.
- on_fit_end() None #
Called at the very end of fit.
If on DDP it is called on every process
- on_fit_start() None #
Called at the very beginning of fit.
If on DDP it is called on every process
- property on_gpu#
Returns
True
if this model is currently located on a GPU.Useful to set flags around the LightningModule for different CPU vs GPU behavior.
- on_hpc_load(checkpoint: Dict[str, Any]) None #
Hook to do whatever you need right before Slurm manager loads the model.
- Parameters
checkpoint – A dictionary with variables from the checkpoint.
Deprecated since version v1.6: This method is deprecated in v1.6 and will be removed in v1.8. Please use
LightningModule.on_load_checkpoint
instead.
- on_hpc_save(checkpoint: Dict[str, Any]) None #
Hook to do whatever you need right before Slurm manager saves the model.
- Parameters
checkpoint – A dictionary in which you can save variables to save in a checkpoint. Contents need to be pickleable.
Deprecated since version v1.6: This method is deprecated in v1.6 and will be removed in v1.8. Please use
LightningModule.on_save_checkpoint
instead.
- on_load_checkpoint(checkpoint: Dict[str, Any]) None #
Called by Lightning to restore your model. If you saved something with
on_save_checkpoint()
this is your chance to restore this.- Parameters
checkpoint – Loaded checkpoint
Example:
def on_load_checkpoint(self, checkpoint): # 99% of the time you don't need to implement this method self.something_cool_i_want_to_save = checkpoint['something_cool_i_want_to_save']
Note
Lightning auto-restores global step, epoch, and train state including amp scaling. There is no need for you to restore anything regarding training.
- on_post_move_to_device() None #
Called in the
parameter_validation
decorator afterto()
is called. This is a good place to tie weights between modules after moving them to a device. Can be used when training models with weight sharing properties on TPU.Addresses the handling of shared weights on TPU: https://github.com/pytorch/xla/blob/master/TROUBLESHOOTING.md#xla-tensor-quirks
Example:
def on_post_move_to_device(self): self.decoder.weight = self.encoder.weight
- on_predict_batch_end(outputs: Optional[Any], batch: Any, batch_idx: int, dataloader_idx: int) None #
Called in the predict loop after the batch.
- Parameters
outputs – The outputs of predict_step_end(test_step(x))
batch – The batched data as it is returned by the test DataLoader.
batch_idx – the index of the batch
dataloader_idx – the index of the dataloader
- on_predict_batch_start(batch: Any, batch_idx: int, dataloader_idx: int) None #
Called in the predict loop before anything happens for that batch.
- Parameters
batch – The batched data as it is returned by the test DataLoader.
batch_idx – the index of the batch
dataloader_idx – the index of the dataloader
- on_predict_dataloader() None #
Called before requesting the predict dataloader.
Deprecated since version v1.5:
on_predict_dataloader()
is deprecated and will be removed in v1.7.0. Please usepredict_dataloader()
directly.
- on_predict_end() None #
Called at the end of predicting.
- on_predict_epoch_end(results: List[Any]) None #
Called at the end of predicting.
- on_predict_epoch_start() None #
Called at the beginning of predicting.
- on_predict_model_eval() None #
Sets the model to eval during the predict loop.
- on_predict_start() None #
Called at the beginning of predicting.
- on_pretrain_routine_end() None #
Called at the end of the pretrain routine (between fit and train start).
fit
pretrain_routine start
pretrain_routine end
training_start
Deprecated since version v1.6:
on_pretrain_routine_end()
has been deprecated in v1.6 and will be removed in v1.8. Useon_fit_start
instead.
- on_pretrain_routine_start() None #
Called at the beginning of the pretrain routine (between fit and train start).
fit
pretrain_routine start
pretrain_routine end
training_start
Deprecated since version v1.6:
on_pretrain_routine_start()
has been deprecated in v1.6 and will be removed in v1.8. Useon_fit_start
instead.
- on_save_checkpoint(checkpoint: Dict[str, Any]) None #
Called by Lightning when saving a checkpoint to give you a chance to store anything else you might want to save.
- Parameters
checkpoint – The full checkpoint dictionary before it gets dumped to a file. Implementations of this hook can insert additional data into this dictionary.
Example:
def on_save_checkpoint(self, checkpoint): # 99% of use cases you don't need to implement this method checkpoint['something_cool_i_want_to_save'] = my_cool_pickable_object
Note
Lightning saves all aspects of training (epoch, global step, etc…) including amp scaling. There is no need for you to store anything about training.
- on_test_batch_end(outputs: Optional[Union[torch.Tensor, Dict[str, Any]]], batch: Any, batch_idx: int, dataloader_idx: int) None #
Called in the test loop after the batch.
- Parameters
outputs – The outputs of test_step_end(test_step(x))
batch – The batched data as it is returned by the test DataLoader.
batch_idx – the index of the batch
dataloader_idx – the index of the dataloader
- on_test_batch_start(batch: Any, batch_idx: int, dataloader_idx: int) None #
Called in the test loop before anything happens for that batch.
- Parameters
batch – The batched data as it is returned by the test DataLoader.
batch_idx – the index of the batch
dataloader_idx – the index of the dataloader
- on_test_dataloader() None #
Called before requesting the test dataloader.
Deprecated since version v1.5:
on_test_dataloader()
is deprecated and will be removed in v1.7.0. Please usetest_dataloader()
directly.
- on_test_end() None #
Called at the end of testing.
- on_test_epoch_end() None #
Called in the test loop at the very end of the epoch.
- on_test_epoch_start() None #
Called in the test loop at the very beginning of the epoch.
- on_test_model_eval() None #
Sets the model to eval during the test loop.
- on_test_model_train() None #
Sets the model to train during the test loop.
- on_test_start() None #
Called at the beginning of testing.
- on_train_batch_end(outputs: Union[torch.Tensor, Dict[str, Any]], batch: Any, batch_idx: int, unused: int = 0) None #
Called in the training loop after the batch.
- Parameters
outputs – The outputs of training_step_end(training_step(x))
batch – The batched data as it is returned by the training DataLoader.
batch_idx – the index of the batch
unused – Deprecated argument. Will be removed in v1.7.
- on_train_batch_start(batch: Any, batch_idx: int, unused: int = 0) Optional[int] #
Called in the training loop before anything happens for that batch.
If you return -1 here, you will skip training for the rest of the current epoch.
- Parameters
batch – The batched data as it is returned by the training DataLoader.
batch_idx – the index of the batch
unused – Deprecated argument. Will be removed in v1.7.
- on_train_dataloader() None #
Called before requesting the train dataloader.
Deprecated since version v1.5:
on_train_dataloader()
is deprecated and will be removed in v1.7.0. Please usetrain_dataloader()
directly.
- on_train_end() None #
Called at the end of training before logger experiment is closed.
- on_train_epoch_end() None #
Called in the training loop at the very end of the epoch.
To access all batch outputs at the end of the epoch, either:
Implement training_epoch_end in the LightningModule OR
Cache data across steps on the attribute(s) of the LightningModule and access them in this hook
- on_train_epoch_start() None #
Called in the training loop at the very beginning of the epoch.
- on_train_start() None #
Called at the beginning of training after sanity check.
- on_val_dataloader() None #
Called before requesting the val dataloader.
Deprecated since version v1.5:
on_val_dataloader()
is deprecated and will be removed in v1.7.0. Please useval_dataloader()
directly.
- on_validation_batch_end(outputs: Optional[Union[torch.Tensor, Dict[str, Any]]], batch: Any, batch_idx: int, dataloader_idx: int) None #
Called in the validation loop after the batch.
- Parameters
outputs – The outputs of validation_step_end(validation_step(x))
batch – The batched data as it is returned by the validation DataLoader.
batch_idx – the index of the batch
dataloader_idx – the index of the dataloader
- on_validation_batch_start(batch: Any, batch_idx: int, dataloader_idx: int) None #
Called in the validation loop before anything happens for that batch.
- Parameters
batch – The batched data as it is returned by the validation DataLoader.
batch_idx – the index of the batch
dataloader_idx – the index of the dataloader
- on_validation_end() None #
Called at the end of validation.
- on_validation_epoch_end() None #
Called in the validation loop at the very end of the epoch.
- on_validation_epoch_start() None #
Called in the validation loop at the very beginning of the epoch.
- on_validation_model_eval() None #
Sets the model to eval during the val loop.
- on_validation_model_train() None #
Sets the model to train during the val loop.
- on_validation_start() None #
Called at the beginning of validation.
- optimizer_step(epoch: int, batch_idx: int, optimizer: Union[torch.optim.optimizer.Optimizer, pytorch_lightning.core.optimizer.LightningOptimizer], optimizer_idx: int = 0, optimizer_closure: Optional[Callable[[], Any]] = None, on_tpu: bool = False, using_native_amp: bool = False, using_lbfgs: bool = False) None #
Override this method to adjust the default way the
Trainer
calls each optimizer.By default, Lightning calls
step()
andzero_grad()
as shown in the example once per optimizer. This method (andzero_grad()
) won’t be called during the accumulation phase whenTrainer(accumulate_grad_batches != 1)
. Overriding this hook has no benefit with manual optimization.- Parameters
epoch – Current epoch
batch_idx – Index of current batch
optimizer – A PyTorch optimizer
optimizer_idx – If you used multiple optimizers, this indexes into that list.
optimizer_closure – The optimizer closure. This closure must be executed as it includes the calls to
training_step()
,optimizer.zero_grad()
, andbackward()
.on_tpu –
True
if TPU backward is requiredusing_native_amp –
True
if using native ampusing_lbfgs – True if the matching optimizer is
torch.optim.LBFGS
Examples:
# DEFAULT def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx, optimizer_closure, on_tpu, using_native_amp, using_lbfgs): optimizer.step(closure=optimizer_closure) # Alternating schedule for optimizer steps (i.e.: GANs) def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx, optimizer_closure, on_tpu, using_native_amp, using_lbfgs): # update generator opt every step if optimizer_idx == 0: optimizer.step(closure=optimizer_closure) # update discriminator opt every 2 steps if optimizer_idx == 1: if (batch_idx + 1) % 2 == 0 : optimizer.step(closure=optimizer_closure) else: # call the closure by itself to run `training_step` + `backward` without an optimizer step optimizer_closure() # ... # add as many optimizers as you want
Here’s another example showing how to use this for more advanced things such as learning rate warm-up:
# learning rate warm-up def optimizer_step( self, epoch, batch_idx, optimizer, optimizer_idx, optimizer_closure, on_tpu, using_native_amp, using_lbfgs, ): # update params optimizer.step(closure=optimizer_closure) # manually warm up lr without a scheduler if self.trainer.global_step < 500: lr_scale = min(1.0, float(self.trainer.global_step + 1) / 500.0) for pg in optimizer.param_groups: pg["lr"] = lr_scale * self.learning_rate
- optimizer_zero_grad(epoch: int, batch_idx: int, optimizer: torch.optim.optimizer.Optimizer, optimizer_idx: int)#
Override this method to change the default behaviour of
optimizer.zero_grad()
.- Parameters
epoch – Current epoch
batch_idx – Index of current batch
optimizer – A PyTorch optimizer
optimizer_idx – If you used multiple optimizers this indexes into that list.
Examples:
# DEFAULT def optimizer_zero_grad(self, epoch, batch_idx, optimizer, optimizer_idx): optimizer.zero_grad() # Set gradients to `None` instead of zero to improve performance. def optimizer_zero_grad(self, epoch, batch_idx, optimizer, optimizer_idx): optimizer.zero_grad(set_to_none=True)
See
torch.optim.Optimizer.zero_grad()
for the explanation of the above example.
- optimizers(use_pl_optimizer: bool = True) Union[torch.optim.optimizer.Optimizer, pytorch_lightning.core.optimizer.LightningOptimizer, List[torch.optim.optimizer.Optimizer], List[pytorch_lightning.core.optimizer.LightningOptimizer]] #
Returns the optimizer(s) that are being used during training. Useful for manual optimization.
- Parameters
use_pl_optimizer – If
True
, will wrap the optimizer(s) in aLightningOptimizer
for automatic handling of precision and profiling.- Returns
A single optimizer, or a list of optimizers in case multiple ones are present.
- parameters(recurse: bool = True) Iterator[torch.nn.parameter.Parameter] #
Returns an iterator over module parameters.
This is typically passed to an optimizer.
- Parameters
recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.
- Yields
Parameter – module parameter
Example:
>>> for param in model.parameters(): >>> print(type(param), param.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
- predict_dataloader() Union[torch.utils.data.dataloader.DataLoader, Sequence[torch.utils.data.dataloader.DataLoader]] #
Implement one or multiple PyTorch DataLoaders for prediction.
It’s recommended that all data downloads and preparation happen in
prepare_data()
.predict()
Note
Lightning adds the correct sampler for distributed and arbitrary hardware There is no need to set it yourself.
- Returns
A
torch.utils.data.DataLoader
or a sequence of them specifying prediction samples.
Note
In the case where you return multiple prediction dataloaders, the
predict_step()
will have an argumentdataloader_idx
which matches the order here.
- prepare_data() None #
Use this to download and prepare data. Downloading and saving data with multiple processes (distributed settings) will result in corrupted data. Lightning ensures this method is called only within a single process, so you can safely add your downloading logic within.
Warning
DO NOT set state to the model (use
setup
instead) since this is NOT called on every deviceExample:
def prepare_data(self): # good download_data() tokenize() etc() # bad self.split = data_split self.some_state = some_other_state()
In DDP
prepare_data
can be called in two ways (using Trainer(prepare_data_per_node)):Once per node. This is the default and is only called on LOCAL_RANK=0.
Once in total. Only called on GLOBAL_RANK=0.
See prepare_data_per_node.
Example:
# DEFAULT # called once per node on LOCAL_RANK=0 of that node Trainer(prepare_data_per_node=True) # call on GLOBAL_RANK=0 (great for shared file systems) Trainer(prepare_data_per_node=False)
This is called before requesting the dataloaders:
model.prepare_data() initialize_distributed() model.setup(stage) model.train_dataloader() model.val_dataloader() model.test_dataloader()
- print(*args, **kwargs) None #
Prints only from process 0. Use this in any distributed mode to log only once.
- Parameters
*args – The thing to print. The same as for Python’s built-in print function.
**kwargs – The same as for Python’s built-in print function.
Example:
def forward(self, x): self.print(x, 'in forward')
- register_backward_hook(hook: Callable[[torch.nn.modules.module.Module, Union[Tuple[torch.Tensor, ...], torch.Tensor], Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[None, torch.Tensor]]) torch.utils.hooks.RemovableHandle #
Registers a backward hook on the module.
This function is deprecated in favor of
register_full_backward_hook()
and the behavior of this function will change in future versions.- Returns
torch.utils.hooks.RemovableHandle
– a handle that can be used to remove the added hook by callinghandle.remove()
- register_buffer(name: str, tensor: Optional[torch.Tensor], persistent: bool = True) None #
Adds a buffer to the module.
This is typically used to register a buffer that should not to be considered a model parameter. For example, BatchNorm’s
running_mean
is not a parameter, but is part of the module’s state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by settingpersistent
toFalse
. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module’sstate_dict
.Buffers can be accessed as attributes using given names.
- Parameters
name (string) – name of the buffer. The buffer can be accessed from this module using the given name
tensor (Tensor or None) – buffer to be registered. If
None
, then operations that run on buffers, such ascuda
, are ignored. IfNone
, the buffer is not included in the module’sstate_dict
.persistent (bool) – whether the buffer is part of this module’s
state_dict
.
Example:
>>> self.register_buffer('running_mean', torch.zeros(num_features))
- register_forward_hook(hook: Callable[[...], None]) torch.utils.hooks.RemovableHandle #
Registers a forward hook on the module.
The hook will be called every time after
forward()
has computed an output. It should have the following signature:hook(module, input, output) -> None or modified output
The input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to the
forward
. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called afterforward()
is called.- Returns
torch.utils.hooks.RemovableHandle
– a handle that can be used to remove the added hook by callinghandle.remove()
- register_forward_pre_hook(hook: Callable[[...], None]) torch.utils.hooks.RemovableHandle #
Registers a forward pre-hook on the module.
The hook will be called every time before
forward()
is invoked. It should have the following signature:hook(module, input) -> None or modified input
The input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to the
forward
. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned(unless that value is already a tuple).- Returns
torch.utils.hooks.RemovableHandle
– a handle that can be used to remove the added hook by callinghandle.remove()
- register_full_backward_hook(hook: Callable[[torch.nn.modules.module.Module, Union[Tuple[torch.Tensor, ...], torch.Tensor], Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[None, torch.Tensor]]) torch.utils.hooks.RemovableHandle #
Registers a backward hook on the module.
The hook will be called every time the gradients with respect to module inputs are computed. The hook should have the following signature:
hook(module, grad_input, grad_output) -> tuple(Tensor) or None
The
grad_input
andgrad_output
are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place ofgrad_input
in subsequent computations.grad_input
will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries ingrad_input
andgrad_output
will beNone
for all non-Tensor arguments.For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module’s forward function.
Warning
Modifying inputs or outputs inplace is not allowed when using backward hooks and will raise an error.
- Returns
torch.utils.hooks.RemovableHandle
– a handle that can be used to remove the added hook by callinghandle.remove()
- register_module(name: str, module: Optional[torch.nn.modules.module.Module]) None #
Alias for
add_module()
.
- register_parameter(name: str, param: Optional[torch.nn.parameter.Parameter]) None #
Adds a parameter to the module.
The parameter can be accessed as an attribute using given name.
- Parameters
name (string) – name of the parameter. The parameter can be accessed from this module using the given name
param (Parameter or None) – parameter to be added to the module. If
None
, then operations that run on parameters, such ascuda
, are ignored. IfNone
, the parameter is not included in the module’sstate_dict
.
- requires_grad_(requires_grad: bool = True) torch.nn.modules.module.T #
Change if autograd should record operations on parameters in this module.
This method sets the parameters’
requires_grad
attributes in-place.This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).
See locally-disable-grad-doc for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.
- Parameters
requires_grad (bool) – whether autograd should record operations on parameters in this module. Default:
True
.- Returns
Module – self
- save_hyperparameters(*args: Any, ignore: Optional[Union[Sequence[str], str]] = None, frame: Optional[frame] = None, logger: bool = True) None #
Save arguments to
hparams
attribute.- Parameters
args – single object of dict, NameSpace or OmegaConf or string names or arguments from class
__init__
ignore – an argument name or a list of argument names from class
__init__
to be ignoredframe – a frame object. Default is None
logger – Whether to send the hyperparameters to the logger. Default: True
- Example::
>>> class ManuallyArgsModel(HyperparametersMixin): ... def __init__(self, arg1, arg2, arg3): ... super().__init__() ... # manually assign arguments ... self.save_hyperparameters('arg1', 'arg3') ... def forward(self, *args, **kwargs): ... ... >>> model = ManuallyArgsModel(1, 'abc', 3.14) >>> model.hparams "arg1": 1 "arg3": 3.14
>>> class AutomaticArgsModel(HyperparametersMixin): ... def __init__(self, arg1, arg2, arg3): ... super().__init__() ... # equivalent automatic ... self.save_hyperparameters() ... def forward(self, *args, **kwargs): ... ... >>> model = AutomaticArgsModel(1, 'abc', 3.14) >>> model.hparams "arg1": 1 "arg2": abc "arg3": 3.14
>>> class SingleArgModel(HyperparametersMixin): ... def __init__(self, params): ... super().__init__() ... # manually assign single argument ... self.save_hyperparameters(params) ... def forward(self, *args, **kwargs): ... ... >>> model = SingleArgModel(Namespace(p1=1, p2='abc', p3=3.14)) >>> model.hparams "p1": 1 "p2": abc "p3": 3.14
>>> class ManuallyArgsModel(HyperparametersMixin): ... def __init__(self, arg1, arg2, arg3): ... super().__init__() ... # pass argument(s) to ignore as a string or in a list ... self.save_hyperparameters(ignore='arg2') ... def forward(self, *args, **kwargs): ... ... >>> model = ManuallyArgsModel(1, 'abc', 3.14) >>> model.hparams "arg1": 1 "arg3": 3.14
- set_extra_state(state: Any)#
This function is called from
load_state_dict()
to handle any extra state found within the state_dict. Implement this function and a correspondingget_extra_state()
for your module if you need to store extra state within its state_dict.- Parameters
state (dict) – Extra state from the state_dict
- setup(stage: Optional[str] = None) None #
Called at the beginning of fit (train + validate), validate, test, or predict. This is a good hook when you need to build models dynamically or adjust something about them. This hook is called on every process when using DDP.
- Parameters
stage – either
'fit'
,'validate'
,'test'
, or'predict'
Example:
class LitModel(...): def __init__(self): self.l1 = None def prepare_data(self): download_data() tokenize() # don't do this self.something = else def setup(self, stage): data = load_data(...) self.l1 = nn.Linear(28, data.num_classes)
See
torch.Tensor.share_memory_()
- state_dict(destination=None, prefix='', keep_vars=False)#
Returns a dictionary containing a whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to
None
are not included.- Returns
dict – a dictionary containing a whole state of the module
Example:
>>> module.state_dict().keys() ['bias', 'weight']
- summarize(max_depth: int = 1) pytorch_lightning.utilities.model_summary.ModelSummary #
Summarize this LightningModule.
Deprecated since version v1.5: This method was deprecated in v1.5 in favor of pytorch_lightning.utilities.model_summary.summarize and will be removed in v1.7.
- Parameters
max_depth – The maximum depth of layer nesting that the summary will include. A value of 0 turns the layer summary off. Default: 1.
- Returns
The model summary object
- tbptt_split_batch(batch: Any, split_size: int) List[Any] #
When using truncated backpropagation through time, each batch must be split along the time dimension. Lightning handles this by default, but for custom behavior override this function.
- Parameters
batch – Current batch
split_size – The size of the split
- Returns
List of batch splits. Each split will be passed to
training_step()
to enable truncated back propagation through time. The default implementation splits root level Tensors and Sequences at dim=1 (i.e. time dim). It assumes that each time dim is the same length.
Examples:
def tbptt_split_batch(self, batch, split_size): splits = [] for t in range(0, time_dims[0], split_size): batch_split = [] for i, x in enumerate(batch): if isinstance(x, torch.Tensor): split_x = x[:, t:t + split_size] elif isinstance(x, collections.Sequence): split_x = [None] * len(x) for batch_idx in range(len(x)): split_x[batch_idx] = x[batch_idx][t:t + split_size] batch_split.append(split_x) splits.append(batch_split) return splits
Note
Called in the training loop after
on_train_batch_start()
if :paramref:`~pytorch_lightning.core.lightning.LightningModule.truncated_bptt_steps` > 0. Each returned batch split is passed separately totraining_step()
.
- teardown(stage: Optional[str] = None) None #
Called at the end of fit (train + validate), validate, test, or predict.
- Parameters
stage – either
'fit'
,'validate'
,'test'
, or'predict'
- test_dataloader() Union[torch.utils.data.dataloader.DataLoader, Sequence[torch.utils.data.dataloader.DataLoader]] #
Implement one or multiple PyTorch DataLoaders for testing.
For data processing use the following pattern:
download in
prepare_data()
process and split in
setup()
However, the above are only necessary for distributed processing.
Warning
do not assign state in prepare_data
test()
Note
Lightning adds the correct sampler for distributed and arbitrary hardware. There is no need to set it yourself.
- Returns
A
torch.utils.data.DataLoader
or a sequence of them specifying testing samples.
Example:
def test_dataloader(self): transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]) dataset = MNIST(root='/path/to/mnist/', train=False, transform=transform, download=True) loader = torch.utils.data.DataLoader( dataset=dataset, batch_size=self.batch_size, shuffle=False ) return loader # can also return multiple dataloaders def test_dataloader(self): return [loader_a, loader_b, ..., loader_n]
Note
If you don’t need a test dataset and a
test_step()
, you don’t need to implement this method.Note
In the case where you return multiple test dataloaders, the
test_step()
will have an argumentdataloader_idx
which matches the order here.
- test_epoch_end(outputs: Union[List[Union[torch.Tensor, Dict[str, Any]]], List[List[Union[torch.Tensor, Dict[str, Any]]]]]) None #
Called at the end of a test epoch with the output of all test steps.
# the pseudocode for these calls test_outs = [] for test_batch in test_data: out = test_step(test_batch) test_outs.append(out) test_epoch_end(test_outs)
- Parameters
outputs – List of outputs you defined in
test_step_end()
, or if there are multiple dataloaders, a list containing a list of outputs for each dataloader- Returns
None
Note
If you didn’t define a
test_step()
, this won’t be called.Examples
With a single dataloader:
def test_epoch_end(self, outputs): # do something with the outputs of all test batches all_test_preds = test_step_outputs.predictions some_result = calc_all_results(all_test_preds) self.log(some_result)
With multiple dataloaders, outputs will be a list of lists. The outer list contains one entry per dataloader, while the inner list contains the individual outputs of each test step for that dataloader.
def test_epoch_end(self, outputs): final_value = 0 for dataloader_outputs in outputs: for test_step_out in dataloader_outputs: # do something final_value += test_step_out self.log("final_metric", final_value)
- test_step_end(*args, **kwargs) Optional[Union[torch.Tensor, Dict[str, Any]]] #
Use this when testing with dp or ddp2 because
test_step()
will operate on only part of the batch. However, this is still optional and only needed for things like softmax or NCE loss.Note
If you later switch to ddp or some other mode, this will still be called so that you don’t have to change your code.
# pseudocode sub_batches = split_batches_for_dp(batch) step_output = [test_step(sub_batch) for sub_batch in sub_batches] test_step_end(step_output)
- Parameters
step_output – What you return in
test_step()
for each batch part.- Returns
None or anything
# WITHOUT test_step_end # if used in DP or DDP2, this batch is 1/num_gpus large def test_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self(x) loss = self.softmax(out) self.log("test_loss", loss) # -------------- # with test_step_end to do softmax over the full batch def test_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self.encoder(x) return out def test_step_end(self, output_results): # this out is now the full size of the batch all_test_step_outs = output_results.out loss = nce_loss(all_test_step_outs) self.log("test_loss", loss)
See also
See the accelerators/gpu:Multi GPU Training guide for more details.
- to(*args: Any, **kwargs: Any) typing_extensions.Self #
Moves and/or casts the parameters and buffers.
This can be called as .. function:: to(device=None, dtype=None, non_blocking=False) .. function:: to(dtype, non_blocking=False) .. function:: to(tensor, non_blocking=False) Its signature is similar to
torch.Tensor.to()
, but only accepts floating point desireddtype
s. In addition, this method will only cast the floating point parameters and buffers todtype
(if given). The integral parameters and buffers will be moveddevice
, if that is given, but with dtypes unchanged. Whennon_blocking
is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices. See below for examples.Note
This method modifies the module in-place.
- Parameters
device – the desired device of the parameters and buffers in this module
dtype – the desired floating point type of the floating point parameters and buffers in this module
tensor – Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module
- Returns
Module – self
- Example::
>>> class ExampleModule(DeviceDtypeModuleMixin): ... def __init__(self, weight: torch.Tensor): ... super().__init__() ... self.register_buffer('weight', weight) >>> _ = torch.manual_seed(0) >>> module = ExampleModule(torch.rand(3, 4)) >>> module.weight tensor([[...]]) >>> module.to(torch.double) ExampleModule() >>> module.weight tensor([[...]], dtype=torch.float64) >>> cpu = torch.device('cpu') >>> module.to(cpu, dtype=torch.half, non_blocking=True) ExampleModule() >>> module.weight tensor([[...]], dtype=torch.float16) >>> module.to(cpu) ExampleModule() >>> module.weight tensor([[...]], dtype=torch.float16) >>> module.device device(type='cpu') >>> module.dtype torch.float16
- to_empty(*, device: Union[str, torch.device]) torch.nn.modules.module.T #
Moves the parameters and buffers to the specified device without copying storage.
- Parameters
device (
torch.device
) – The desired device of the parameters and buffers in this module.- Returns
Module – self
- to_onnx(file_path: Union[str, pathlib.Path], input_sample: Optional[Any] = None, **kwargs)#
Saves the model in ONNX format.
- Parameters
file_path – The path of the file the onnx model should be saved to.
input_sample – An input for tracing. Default: None (Use self.example_input_array)
**kwargs – Will be passed to torch.onnx.export function.
Example
>>> class SimpleModel(LightningModule): ... def __init__(self): ... super().__init__() ... self.l1 = torch.nn.Linear(in_features=64, out_features=4) ... ... def forward(self, x): ... return torch.relu(self.l1(x.view(x.size(0), -1)))
>>> with tempfile.NamedTemporaryFile(suffix='.onnx', delete=False) as tmpfile: ... model = SimpleModel() ... input_sample = torch.randn((1, 64)) ... model.to_onnx(tmpfile.name, input_sample, export_params=True) ... os.path.isfile(tmpfile.name) True
- to_torchscript(file_path: Optional[Union[str, pathlib.Path]] = None, method: Optional[str] = 'script', example_inputs: Optional[Any] = None, **kwargs) Union[torch._C.ScriptModule, Dict[str, torch._C.ScriptModule]] #
By default compiles the whole model to a
ScriptModule
. If you want to use tracing, please provided the argumentmethod='trace'
and make sure that either the example_inputs argument is provided, or the model hasexample_input_array
set. If you would like to customize the modules that are scripted you should override this method. In case you want to return multiple modules, we recommend using a dictionary.- Parameters
file_path – Path where to save the torchscript. Default: None (no file saved).
method – Whether to use TorchScript’s script or trace method. Default: ‘script’
example_inputs – An input to be used to do tracing when method is set to ‘trace’. Default: None (uses
example_input_array
)**kwargs – Additional arguments that will be passed to the
torch.jit.script()
ortorch.jit.trace()
function.
Note
Requires the implementation of the
forward()
method.The exported script will be set to evaluation mode.
It is recommended that you install the latest supported version of PyTorch to use this feature without limitations. See also the
torch.jit
documentation for supported features.
Example
>>> class SimpleModel(LightningModule): ... def __init__(self): ... super().__init__() ... self.l1 = torch.nn.Linear(in_features=64, out_features=4) ... ... def forward(self, x): ... return torch.relu(self.l1(x.view(x.size(0), -1))) ... >>> model = SimpleModel() >>> model.to_torchscript(file_path="model.pt") >>> os.path.isfile("model.pt") >>> torch.jit.save(model.to_torchscript(file_path="model_trace.pt", method='trace', ... example_inputs=torch.randn(1, 64))) >>> os.path.isfile("model_trace.pt") True
- Returns
This LightningModule as a torchscript, regardless of whether file_path is defined or not.
- toggle_optimizer(optimizer: Union[torch.optim.optimizer.Optimizer, pytorch_lightning.core.optimizer.LightningOptimizer], optimizer_idx: int) None #
Makes sure only the gradients of the current optimizer’s parameters are calculated in the training step to prevent dangling gradients in multiple-optimizer setup.
This is only called automatically when automatic optimization is enabled and multiple optimizers are used. It works with
untoggle_optimizer()
to make sureparam_requires_grad_state
is properly reset.- Parameters
optimizer – The optimizer to toggle.
optimizer_idx – The index of the optimizer to toggle.
- train(mode: bool = True) torch.nn.modules.module.T #
Sets the module in training mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.- Parameters
mode (bool) – whether to set training mode (
True
) or evaluation mode (False
). Default:True
.- Returns
Module – self
- train_dataloader() Union[torch.utils.data.dataloader.DataLoader, Sequence[torch.utils.data.dataloader.DataLoader], Sequence[Sequence[torch.utils.data.dataloader.DataLoader]], Sequence[Dict[str, torch.utils.data.dataloader.DataLoader]], Dict[str, torch.utils.data.dataloader.DataLoader], Dict[str, Dict[str, torch.utils.data.dataloader.DataLoader]], Dict[str, Sequence[torch.utils.data.dataloader.DataLoader]]] #
Implement one or more PyTorch DataLoaders for training.
- Returns
A collection of
torch.utils.data.DataLoader
specifying training samples. In the case of multiple dataloaders, please see this section.
The dataloader you return will not be reloaded unless you set :paramref:`~pytorch_lightning.trainer.Trainer.reload_dataloaders_every_n_epochs` to a positive integer.
For data processing use the following pattern:
download in
prepare_data()
process and split in
setup()
However, the above are only necessary for distributed processing.
Warning
do not assign state in prepare_data
fit()
Note
Lightning adds the correct sampler for distributed and arbitrary hardware. There is no need to set it yourself.
Example:
# single dataloader def train_dataloader(self): transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]) dataset = MNIST(root='/path/to/mnist/', train=True, transform=transform, download=True) loader = torch.utils.data.DataLoader( dataset=dataset, batch_size=self.batch_size, shuffle=True ) return loader # multiple dataloaders, return as list def train_dataloader(self): mnist = MNIST(...) cifar = CIFAR(...) mnist_loader = torch.utils.data.DataLoader( dataset=mnist, batch_size=self.batch_size, shuffle=True ) cifar_loader = torch.utils.data.DataLoader( dataset=cifar, batch_size=self.batch_size, shuffle=True ) # each batch will be a list of tensors: [batch_mnist, batch_cifar] return [mnist_loader, cifar_loader] # multiple dataloader, return as dict def train_dataloader(self): mnist = MNIST(...) cifar = CIFAR(...) mnist_loader = torch.utils.data.DataLoader( dataset=mnist, batch_size=self.batch_size, shuffle=True ) cifar_loader = torch.utils.data.DataLoader( dataset=cifar, batch_size=self.batch_size, shuffle=True ) # each batch will be a dict of tensors: {'mnist': batch_mnist, 'cifar': batch_cifar} return {'mnist': mnist_loader, 'cifar': cifar_loader}
- training_epoch_end(outputs: List[Union[torch.Tensor, Dict[str, Any]]]) None #
Called at the end of the training epoch with the outputs of all training steps. Use this in case you need to do something with all the outputs returned by
training_step()
.# the pseudocode for these calls train_outs = [] for train_batch in train_data: out = training_step(train_batch) train_outs.append(out) training_epoch_end(train_outs)
- Parameters
outputs – List of outputs you defined in
training_step()
. If there are multiple optimizers or when usingtruncated_bptt_steps > 0
, the lists have the dimensions (n_batches, tbptt_steps, n_optimizers). Dimensions of length 1 are squeezed.- Returns
None
Note
If this method is not overridden, this won’t be called.
def training_epoch_end(self, training_step_outputs): # do something with all training_step outputs for out in training_step_outputs: ...
- training_step_end(step_output: Union[torch.Tensor, Dict[str, Any]]) Union[torch.Tensor, Dict[str, Any]] #
Use this when training with dp or ddp2 because
training_step()
will operate on only part of the batch. However, this is still optional and only needed for things like softmax or NCE loss.Note
If you later switch to ddp or some other mode, this will still be called so that you don’t have to change your code
# pseudocode sub_batches = split_batches_for_dp(batch) step_output = [training_step(sub_batch) for sub_batch in sub_batches] training_step_end(step_output)
- Parameters
step_output – What you return in training_step for each batch part.
- Returns
Anything
When using dp/ddp2 distributed backends, only a portion of the batch is inside the training_step:
def training_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self(x) # softmax uses only a portion of the batch in the denominator loss = self.softmax(out) loss = nce_loss(loss) return loss
If you wish to do something with all the parts of the batch, then use this method to do it:
def training_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self.encoder(x) return {"pred": out} def training_step_end(self, training_step_outputs): gpu_0_pred = training_step_outputs[0]["pred"] gpu_1_pred = training_step_outputs[1]["pred"] gpu_n_pred = training_step_outputs[n]["pred"] # this softmax now uses the full batch loss = nce_loss([gpu_0_pred, gpu_1_pred, gpu_n_pred]) return loss
See also
See the accelerators/gpu:Multi GPU Training guide for more details.
- transfer_batch_to_device(batch: Any, device: torch.device, dataloader_idx: int) Any #
Override this hook if your
DataLoader
returns tensors wrapped in a custom data structure.The data types listed below (and any arbitrary nesting of them) are supported out of the box:
torch.Tensor
or anything that implements .to(…)list
dict
tuple
torchtext.data.batch.Batch
For anything else, you need to define how the data is moved to the target device (CPU, GPU, TPU, …).
Note
This hook should only transfer the data and not modify it, nor should it move the data to any other device than the one passed in as argument (unless you know what you are doing). To check the current state of execution of this hook you can use
self.trainer.training/testing/validating/predicting
so that you can add different logic as per your requirement.Note
This hook only runs on single GPU training and DDP (no data-parallel). Data-Parallel support will come in near future.
- Parameters
batch – A batch of data that needs to be transferred to a new device.
device – The target device as defined in PyTorch.
dataloader_idx – The index of the dataloader to which the batch belongs.
- Returns
A reference to the data on the new device.
Example:
def transfer_batch_to_device(self, batch, device, dataloader_idx): if isinstance(batch, CustomBatch): # move all tensors in your custom data structure to the device batch.samples = batch.samples.to(device) batch.targets = batch.targets.to(device) elif dataloader_idx == 0: # skip device transfer for the first dataloader or anything you wish pass else: batch = super().transfer_batch_to_device(data, device, dataloader_idx) return batch
- Raises
MisconfigurationException – If using data-parallel,
Trainer(strategy='dp')
.
See also
move_data_to_device()
apply_to_collection()
- property truncated_bptt_steps: int#
Enables Truncated Backpropagation Through Time in the Trainer when set to a positive integer.
It represents the number of times
training_step()
gets called before backpropagation. If this is > 0, thetraining_step()
receives an additional argumenthiddens
and is expected to return a hidden state.
- type(dst_type: Union[str, torch.dtype]) typing_extensions.Self #
Casts all parameters and buffers to
dst_type
.- Parameters
dst_type (type or string) – the desired type
- Returns
Module – self
- unfreeze() None #
Unfreeze all parameters for training.
model = MyLightningModule(...) model.unfreeze()
- untoggle_optimizer(optimizer_idx: int) None #
Resets the state of required gradients that were toggled with
toggle_optimizer()
.This is only called automatically when automatic optimization is enabled and multiple optimizers are used.
- Parameters
optimizer_idx – The index of the optimizer to untoggle.
- property use_amp: bool#
Deprecated since version v1.6..
This property was deprecated in v1.6 and will be removed in v1.8.
- val_dataloader() Union[torch.utils.data.dataloader.DataLoader, Sequence[torch.utils.data.dataloader.DataLoader]] #
Implement one or multiple PyTorch DataLoaders for validation.
The dataloader you return will not be reloaded unless you set :paramref:`~pytorch_lightning.trainer.Trainer.reload_dataloaders_every_n_epochs` to a positive integer.
It’s recommended that all data downloads and preparation happen in
prepare_data()
.fit()
validate()
Note
Lightning adds the correct sampler for distributed and arbitrary hardware There is no need to set it yourself.
- Returns
A
torch.utils.data.DataLoader
or a sequence of them specifying validation samples.
Examples:
def val_dataloader(self): transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]) dataset = MNIST(root='/path/to/mnist/', train=False, transform=transform, download=True) loader = torch.utils.data.DataLoader( dataset=dataset, batch_size=self.batch_size, shuffle=False ) return loader # can also return multiple dataloaders def val_dataloader(self): return [loader_a, loader_b, ..., loader_n]
Note
If you don’t need a validation dataset and a
validation_step()
, you don’t need to implement this method.Note
In the case where you return multiple validation dataloaders, the
validation_step()
will have an argumentdataloader_idx
which matches the order here.
- validation_epoch_end(outputs: Union[List[Union[torch.Tensor, Dict[str, Any]]], List[List[Union[torch.Tensor, Dict[str, Any]]]]]) None #
Called at the end of the validation epoch with the outputs of all validation steps.
# the pseudocode for these calls val_outs = [] for val_batch in val_data: out = validation_step(val_batch) val_outs.append(out) validation_epoch_end(val_outs)
- Parameters
outputs – List of outputs you defined in
validation_step()
, or if there are multiple dataloaders, a list containing a list of outputs for each dataloader.- Returns
None
Note
If you didn’t define a
validation_step()
, this won’t be called.Examples
With a single dataloader:
def validation_epoch_end(self, val_step_outputs): for out in val_step_outputs: ...
With multiple dataloaders, outputs will be a list of lists. The outer list contains one entry per dataloader, while the inner list contains the individual outputs of each validation step for that dataloader.
def validation_epoch_end(self, outputs): for dataloader_output_result in outputs: dataloader_outs = dataloader_output_result.dataloader_i_outputs self.log("final_metric", final_value)
- validation_step_end(*args, **kwargs) Optional[Union[torch.Tensor, Dict[str, Any]]] #
Use this when validating with dp or ddp2 because
validation_step()
will operate on only part of the batch. However, this is still optional and only needed for things like softmax or NCE loss.Note
If you later switch to ddp or some other mode, this will still be called so that you don’t have to change your code.
# pseudocode sub_batches = split_batches_for_dp(batch) step_output = [validation_step(sub_batch) for sub_batch in sub_batches] validation_step_end(step_output)
- Parameters
step_output – What you return in
validation_step()
for each batch part.- Returns
None or anything
# WITHOUT validation_step_end # if used in DP or DDP2, this batch is 1/num_gpus large def validation_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self.encoder(x) loss = self.softmax(out) loss = nce_loss(loss) self.log("val_loss", loss) # -------------- # with validation_step_end to do softmax over the full batch def validation_step(self, batch, batch_idx): # batch is 1/num_gpus big x, y = batch out = self(x) return out def validation_step_end(self, val_step_outputs): for out in val_step_outputs: ...
See also
See the accelerators/gpu:Multi GPU Training guide for more details.
- xpu(device: Optional[Union[int, torch.device]] = None) torch.nn.modules.module.T #
Moves all model parameters and buffers to the XPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on XPU while being optimized.
Note
This method modifies the module in-place.
- Parameters
device (int, optional) – if specified, all parameters will be copied to that device
- Returns
Module – self
- zero_grad(set_to_none: bool = False) None #
Sets gradients of all model parameters to zero. See similar function under
torch.optim.Optimizer
for more context.- Parameters
set_to_none (bool) – instead of setting to zero, set the grads to None. See
torch.optim.Optimizer.zero_grad()
for details.
- training: bool#