wetsuit.models module
Models module.
- class wetsuit.models.BaseContainer(estimator: H2OEstimator, features: List[Union[str, int]], response: Union[str, int])[source]
Bases:
BaseEstimatorBase container class.
Instantiate estimator.
- Parameters:
estimator (H2OEstimator) – An instantiated H2OEstimator.
features (List[Union[str, int]]) – A list of column names or indices indicating the predictor variables.
response (Union[str, int]) – A column name or index indicating the response variable.
- __init__(estimator: H2OEstimator, features: List[Union[str, int]], response: Union[str, int])[source]
Instantiate estimator.
- Parameters:
estimator (H2OEstimator) – An instantiated H2OEstimator.
features (List[Union[str, int]]) – A list of column names or indices indicating the predictor variables.
response (Union[str, int]) – A column name or index indicating the response variable.
- fit(X, y) BaseContainer[source]
Fit the estimator.
- Parameters:
X (Array-like of shape [n_samples, n_features]) – The input samples.
y (Array-like of shape (n_samples,) or (n_samples, n_outputs)) – Target values (None for unsupervised transformations).
- Returns:
BaseContainer – Self.
Notes
Conversion to H2OFrame is handled in the .fit() method. Conversion to DataFrame is handled in the .predict() method.
- predict(X) DataFrame[source]
Make predictions with fitted estimator.
- Parameters:
X (array of shape [n_samples, n_features]) – The input samples.
- Returns:
np.ndarray – Array of predicted values.
- get_params(deep=True)
Get parameters for this estimator.
- Parameters:
deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
params (dict) – Parameter names mapped to their values.
- set_params(**params)
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
**params (dict) – Estimator parameters.
- Returns:
self (estimator instance) – Estimator instance.
- class wetsuit.models.WetsuitRegressor(estimator: H2OEstimator, features: List[Union[str, int]], response: Union[str, int])[source]
Bases:
BaseContainer,RegressorMixinScikit-Learn wrapper for H2O Regressors.
Instantiate estimator.
- Parameters:
estimator (H2OEstimator) – An instantiated H2OEstimator.
features (List[Union[str, int]]) – A list of column names or indices indicating the predictor variables.
response (Union[str, int]) – A column name or index indicating the response variable.
- __init__(estimator: H2OEstimator, features: List[Union[str, int]], response: Union[str, int])
Instantiate estimator.
- Parameters:
estimator (H2OEstimator) – An instantiated H2OEstimator.
features (List[Union[str, int]]) – A list of column names or indices indicating the predictor variables.
response (Union[str, int]) – A column name or index indicating the response variable.
- fit(X, y) BaseContainer
Fit the estimator.
- Parameters:
X (Array-like of shape [n_samples, n_features]) – The input samples.
y (Array-like of shape (n_samples,) or (n_samples, n_outputs)) – Target values (None for unsupervised transformations).
- Returns:
BaseContainer – Self.
Notes
Conversion to H2OFrame is handled in the .fit() method. Conversion to DataFrame is handled in the .predict() method.
- get_params(deep=True)
Get parameters for this estimator.
- Parameters:
deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
params (dict) – Parameter names mapped to their values.
- predict(X) DataFrame
Make predictions with fitted estimator.
- Parameters:
X (array of shape [n_samples, n_features]) – The input samples.
- Returns:
np.ndarray – Array of predicted values.
- score(X, y, sample_weight=None)
Return the coefficient of determination of the prediction.
The coefficient of determination
is defined as
, where
is the residual
sum of squares ((y_true - y_pred)** 2).sum()and
is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a
score of 0.0.- Parameters:
X (array-like of shape (n_samples, n_features)) – Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape
(n_samples, n_samples_fitted), wheren_samples_fittedis the number of samples used in the fitting for the estimator.y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True values for X.
sample_weight (array-like of shape (n_samples,), default=None) – Sample weights.
- Returns:
score (float) –
of self.predict(X)wrt. y.
Notes
The
score used when calling scoreon a regressor usesmultioutput='uniform_average'from version 0.23 to keep consistent with default value ofr2_score(). This influences thescoremethod of all the multioutput regressors (except forMultiOutputRegressor).
- set_params(**params)
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
**params (dict) – Estimator parameters.
- Returns:
self (estimator instance) – Estimator instance.
- class wetsuit.models.WetsuitClassifier(estimator: H2OEstimator, features: List[Union[str, int]], response: Union[str, int])[source]
Bases:
BaseContainer,ClassifierMixinScikit-Learn wrapper for H2O Classifiers.
Instantiate estimator.
- Parameters:
estimator (H2OEstimator) – An instantiated H2OEstimator.
features (List[Union[str, int]]) – A list of column names or indices indicating the predictor variables.
response (Union[str, int]) – A column name or index indicating the response variable.
- __init__(estimator: H2OEstimator, features: List[Union[str, int]], response: Union[str, int])
Instantiate estimator.
- Parameters:
estimator (H2OEstimator) – An instantiated H2OEstimator.
features (List[Union[str, int]]) – A list of column names or indices indicating the predictor variables.
response (Union[str, int]) – A column name or index indicating the response variable.
- fit(X, y) BaseContainer
Fit the estimator.
- Parameters:
X (Array-like of shape [n_samples, n_features]) – The input samples.
y (Array-like of shape (n_samples,) or (n_samples, n_outputs)) – Target values (None for unsupervised transformations).
- Returns:
BaseContainer – Self.
Notes
Conversion to H2OFrame is handled in the .fit() method. Conversion to DataFrame is handled in the .predict() method.
- get_params(deep=True)
Get parameters for this estimator.
- Parameters:
deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
params (dict) – Parameter names mapped to their values.
- predict(X) DataFrame
Make predictions with fitted estimator.
- Parameters:
X (array of shape [n_samples, n_features]) – The input samples.
- Returns:
np.ndarray – Array of predicted values.
- score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
- Parameters:
X (array-like of shape (n_samples, n_features)) – Test samples.
y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True labels for X.
sample_weight (array-like of shape (n_samples,), default=None) – Sample weights.
- Returns:
score (float) – Mean accuracy of
self.predict(X)wrt. y.
- set_params(**params)
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
**params (dict) – Estimator parameters.
- Returns:
self (estimator instance) – Estimator instance.