wetsuit.transforms module
Transformers module.
- class wetsuit.transforms.H2oFrameTransformer(features: List[Union[str, int]], response: Union[str, int])[source]
Bases:
BaseEstimator,TransformerMixinTransformer class for H2OFrames.
Instantiate transformer.
- Parameters:
features (List[Union[str, int]]) – A list of column names or indices indicating the predictor variables.
response (Union[str, int]) – A column name or index indicating the response variable.
- __init__(features: List[Union[str, int]], response: Union[str, int])[source]
Instantiate transformer.
- Parameters:
features (List[Union[str, int]]) – A list of column names or indices indicating the predictor variables.
response (Union[str, int]) – A column name or index indicating the response variable.
- fit(X, y) H2oFrameTransformer[source]
Fit transformer to create H2OFrames.
- Parameters:
X (Array-like of shape [n_samples, n_features]) – The input samples.
y (Array-like of shape (n_samples,) or (n_samples, n_outputs)) – Target values (None for unsupervised transformations).
- Returns:
H2oFrameTransformer
- transform(X, y) Tuple[H2OFrame, H2OFrame][source]
Get transformed H2OFrames.
- Parameters:
X (Array-like of shape [n_samples, n_features]) – The input samples.
y (Array-like of shape (n_samples,) or (n_samples, n_outputs)) – Target values (None for unsupervised transformations).
- Returns:
Tuple[h2o.H2OFrame, h2o.H2OFrame] – A tuple of X, y each represented as an H2OFrame.
- fit_transform(X, y=None, **fit_params) Tuple[H2OFrame, H2OFrame][source]
Get transformed H2OFrames.
- Parameters:
X (Array-like of shape [n_samples, n_features]) – The input samples.
y (Array-like of shape (n_samples,) or (n_samples, n_outputs)) – Target values (None for unsupervised transformations).
- Returns:
Tuple[h2o.H2OFrame, h2o.H2OFrame] – A tuple of X, y each represented as an H2OFrame.
- inverse_transform(X: H2OFrame, y: H2OFrame) Tuple[DataFrame, DataFrame][source]
Convert H2OFrames back to pandas DataFrames.
- Parameters:
X (h2o.H2OFrame) – H2OFrame representation of original X data.
y (h2o.H2OFrame) – H2OFrame representation of original y data.
- Returns:
Tuple[pd.DataFrame, pd.DataFrame] – A tuple of X, y each represented as an pandas DataFrame.
- get_params(deep=True)
Get parameters for this estimator.
- Parameters:
deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
params (dict) – Parameter names mapped to their values.
- set_output(*, transform=None)
Set output container.
See sphx_glr_auto_examples_miscellaneous_plot_set_output.py for an example on how to use the API.
- Parameters:
transform ({“default”, “pandas”}, default=None) – Configure output of transform and fit_transform.
“default”: Default output format of a transformer
“pandas”: DataFrame output
None: Transform configuration is unchanged
- Returns:
self (estimator instance) – Estimator instance.
- set_params(**params)
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
**params (dict) – Estimator parameters.
- Returns:
self (estimator instance) – Estimator instance.